Energy Biosciences Institute, Institute for Genomic Biology, University of Illinois, Urbana, Illinois 61801, USA.
J Biol Chem. 2010 Nov 5;285(45):34665-76. doi: 10.1074/jbc.M110.168302. Epub 2010 Aug 25.
Carbohydrate binding modules (CBMs) are specialized proteins that bind to polysaccharides and oligosaccharides. Caldanaerobius polysaccharolyticus Man5ACBM16-1/CBM16-2 bind to glucose-, mannose-, and glucose/mannose-configured substrates. The crystal structures of the two proteins represent the only examples in CBM family 16, and studies that evaluate the roles of amino acid residues in ligand binding in this family are lacking. In this study, we probed the roles of amino acids (selected based on CBM16-1/ligand co-crystal structures) on substrate binding. Two tryptophan (Trp-20 and Trp-125) and two glutamine (Gln-81 and Gln-93) residues are shown to be critical in ligand binding. Additionally, several polar residues that flank the critical residues also contribute to ligand binding. The CBM16-1 Q121E mutation increased affinity for all substrates tested, whereas the Q21G and N97R mutants exhibited decreased substrate affinity. We solved CBM/substrate co-crystal structures to elucidate the molecular basis of the increased substrate binding by CBM16-1 Q121E. The Gln-121, Gln-21, and Asn-97 residues can be manipulated to fine-tune ligand binding by the Man5A CBMs. Surprisingly, none of the eight residues investigated was absolutely conserved in CBM family 16. Thus, the critical residues in the Man5A CBMs are either not essential for substrate binding in the other members of this family or the two CBMs are evolutionarily distinct from the members available in the current protein database. Man5A is dependent on its CBMs for robust activity, and insights from this study should serve to enhance our understanding of the interdependence of its catalytic and substrate binding modules.
碳水化合物结合模块(CBMs)是专门结合多糖和寡糖的蛋白质。Caldanaerobius polysaccharolyticus Man5ACBM16-1/CBM16-2 结合葡萄糖、甘露糖和葡萄糖/甘露糖构型的底物。这两种蛋白质的晶体结构代表了 CBM 家族 16 中的唯一例子,并且缺乏评估该家族中氨基酸残基在配体结合中的作用的研究。在这项研究中,我们探讨了氨基酸(基于 CBM16-1/配体共晶结构选择)在底物结合中的作用。两个色氨酸(Trp-20 和 Trp-125)和两个谷氨酰胺(Gln-81 和 Gln-93)残基对配体结合至关重要。此外,环绕关键残基的几个极性残基也有助于配体结合。CBM16-1 Q121E 突变增加了对所有测试底物的亲和力,而 Q21G 和 N97R 突变体则降低了底物亲和力。我们解决了 CBM/底物共晶结构,以阐明 CBM16-1 Q121E 增加底物结合的分子基础。Gln-121、Gln-21 和 Asn-97 残基可以被操纵以微调 Man5A CBM 对配体的结合。令人惊讶的是,在 CBM 家族 16 中,没有一个研究的 8 个残基是绝对保守的。因此,Man5A CBM 中的关键残基要么对该家族其他成员的底物结合不是必需的,要么这两个 CBM 与当前蛋白质数据库中可用的成员在进化上是不同的。Man5A 依赖其 CBM 来实现强大的活性,本研究的结果应该有助于我们更好地理解其催化和底物结合模块的相互依存关系。