Suppr超能文献

利用基于脉冲场凝胶电泳和多位点可变数目串联重复分析的融合算法提高肠炎沙门氏菌流行病学相关菌株的鉴定。

Improved identification of epidemiologically related strains of Salmonella enterica by use of a fusion algorithm based on pulsed-field gel electrophoresis and multiple-locus variable-number tandem-repeat analysis.

机构信息

Department of Veterinary Microbiology and Pathology, School of Electrical Engineering and Computer Science, Washington State University, Pullman, Washington 99164-2752, USA.

出版信息

J Clin Microbiol. 2010 Nov;48(11):4072-82. doi: 10.1128/JCM.00659-10. Epub 2010 Aug 25.

Abstract

Pulsed-field gel electrophoresis (PFGE) and multiple-locus variable-number tandem-repeat analysis (MLVA) are used to assess genetic similarity between bacterial strains. There are cases, however, when neither of these methods quantifies genetic variation at a level of resolution that is well suited for studying the molecular epidemiology of bacterial pathogens. To improve estimates based on these methods, we propose a fusion algorithm that combines the information obtained from both PFGE and MLVA assays to assess epidemiological relationships. This involves generating distance matrices for PFGE data (Dice coefficients) and MLVA data (single-step stepwise-mutation model) and modifying the relative distances using the two different data types. We applied the algorithm to a set of Salmonella enterica serovar Typhimurium isolates collected from a wide range of sampling dates, locations, and host species. All three classification methods (PFGE only, MLVA only, and fusion) produced a similar pattern of clustering relative to groupings of common phage types, with the fusion results being slightly better. We then examined a group of serovar Newport isolates collected over a limited geographic and temporal scale and showed that the fusion of PFGE and MLVA data produced the best discrimination of isolates relative to a collection site (farm). Our analysis shows that the fusion of PFGE and MLVA data provides an improved ability to discriminate epidemiologically related isolates but provides only minor improvement in the discrimination of less related isolates.

摘要

脉冲场凝胶电泳(PFGE)和多位点可变数目串联重复分析(MLVA)用于评估细菌菌株之间的遗传相似性。然而,在某些情况下,这两种方法都无法在适合研究细菌病原体分子流行病学的分辨率水平上量化遗传变异。为了改进基于这些方法的估计,我们提出了一种融合算法,该算法结合了 PFGE 和 MLVA 测定中获得的信息,以评估流行病学关系。这涉及生成 PFGE 数据(Dice 系数)和 MLVA 数据(单步逐步突变模型)的距离矩阵,并使用两种不同的数据类型修改相对距离。我们将该算法应用于从广泛的采样日期、地点和宿主物种收集的一组肠炎沙门氏菌血清型 Typhimurium 分离株。所有三种分类方法(仅 PFGE、仅 MLVA 和融合)相对于常见噬菌体类型的分组产生了相似的聚类模式,融合结果略好。然后,我们检查了一组在有限的地理和时间范围内收集的血清型 Newport 分离株,并表明 PFGE 和 MLVA 数据的融合相对于采集地点(农场)能够更好地区分分离株。我们的分析表明,PFGE 和 MLVA 数据的融合提供了更好的区分具有流行病学相关性的分离株的能力,但对相关性较低的分离株的区分仅略有改善。

相似文献

本文引用的文献

4
Enhanced subtyping scheme for Salmonella enteritidis.肠炎沙门氏菌的增强亚型分类方案。
Emerg Infect Dis. 2007 Dec;13(12):1932-5. doi: 10.3201/eid1312.070185.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验