Center for Perceptual Systems, Section of Neurobiology, The University of Texas at Austin, Austin, TX 78712, USA.
J Neurophysiol. 2010 Nov;104(5):2615-23. doi: 10.1152/jn.00241.2010. Epub 2010 Aug 25.
In contrast to neurons of the lateral geniculate nucleus (LGN), neurons in the primary visual cortex (V1) are selective for the direction of visual motion. Cortical direction selectivity could emerge from the spatiotemporal configuration of inputs from thalamic cells, from intracortical inhibitory interactions, or from a combination of thalamic and intracortical interactions. To distinguish between these possibilities, we studied the effect of adaptation (prolonged visual stimulation) on the direction selectivity of intracellularly recorded cortical neurons. It is known that adaptation selectively reduces the responses of cortical neurons, while largely sparing the afferent LGN input. Adaptation can therefore be used as a tool to dissect the relative contribution of afferent and intracortical interactions to the generation of direction selectivity. In both simple and complex cells, adaptation caused a hyperpolarization of the resting membrane potential (-2.5 mV, simple cells, -0.95 mV complex cells). In simple cells, adaptation in either direction only slightly reduced the visually evoked depolarization; this reduction was similar for preferred and null directions. In complex cells, adaptation strongly reduced visual responses in a direction-dependent manner: the reduction was largest when the stimulus direction matched that of the adapting motion. As a result, adaptation caused changes in the direction selectivity of complex cells: direction selectivity was reduced after preferred direction adaptation and increased after null direction adaptation. Because adaptation in the null direction enhanced direction selectivity rather than reduced it, it seems unlikely that inhibition from the null direction is the primary mechanism for creating direction selectivity.
与外侧膝状体核(LGN)的神经元相反,初级视觉皮层(V1)中的神经元对视觉运动的方向具有选择性。皮层方向选择性可能源于来自丘脑细胞的输入的时空配置,源于皮层内抑制相互作用,或者源于丘脑和皮层内相互作用的组合。为了区分这些可能性,我们研究了适应(长时间的视觉刺激)对细胞内记录的皮层神经元的方向选择性的影响。已知适应选择性地减少了皮层神经元的反应,而很大程度上保留了传入的 LGN 输入。因此,适应可以用作一种工具来剖析传入和皮层内相互作用对方向选择性产生的相对贡献。在简单和复杂细胞中,适应导致静息膜电位(简单细胞-2.5 mV,复杂细胞-0.95 mV)超极化。在简单细胞中,无论哪个方向的适应都只会略微减少视觉诱发的去极化;这种减少对于优势和零方向都是相似的。在复杂细胞中,适应以方向依赖性的方式强烈减少视觉反应:当刺激方向与适应运动的方向匹配时,减少最大。因此,适应导致了复杂细胞的方向选择性发生变化:在优势方向适应后,方向选择性降低,在零方向适应后增加。由于零方向的适应增强了而不是降低了方向选择性,因此来自零方向的抑制似乎不太可能是产生方向选择性的主要机制。