Suppr超能文献

Direction-selective adaptation in simple and complex cells in cat striate cortex.

作者信息

Marlin S G, Hasan S J, Cynader M S

机构信息

Department of Psychology, Dalhousie University, Halifax, Nova Scotia, Canada.

出版信息

J Neurophysiol. 1988 Apr;59(4):1314-30. doi: 10.1152/jn.1988.59.4.1314.

Abstract
  1. The selectivity of adaptation to unidirectional motion was examined in neurons of the cat striate cortex. Following prolonged stimulation with a unidirectional high-contrast grating, the responsivity of cortical neurons was reduced. In many units this decrease was restricted to the direction of prior stimulation. This selective adaptation produced changes in the degree of direction selectivity of the cortical units (as measured by the ratio of the response to motion in the preferred direction to that in the nonpreferred direction). 2. The initial strength of the directional preference of a given cortical unit did not determine the degree of direction-selective adaptation. Indeed, even non-direction-selective units could exhibit pronounced direction-selective adaptation. The degree of direction-selective adaptation was also independent of the overall decrease in responsivity during adaptation. 3. There was no difference between simple and complex cells in the total amount of adaptation observed. The selectivity of the adaptation, however, did differ between these two cell types. As a group, simple cells showed significant direction-selective adaptation, whereas complex cells did not. The directional preference of most simple cells decreased following preferred direction adaptation and many highly direction selective simple cells became non-direction selective. In addition, simple cells became significantly more direction selective following nonpreferred direction adaptation. 4. Some complex cells also demonstrated direction-selective adaptation. There was, however, much more variability among complex cells than simple cells. Some complex cells actually increased direction selectivity following preferred direction adaptation. These differences between simple and complex cells suggest that changes in direction selectivity following unidirectional adaptation are not due to simple neuronal fatigue of the unit being recorded, but depend on selective adaptation of afferent inputs to the unit. 5. The spontaneous activity of many cortical neurons decreased following preferred direction adaptation but increased following adaptation in the nonpreferred direction. The response to a stationary grating also decreased following preferred direction adaptation. However, there was very little change in the response to a stationary grating following adaptation in the nonpreferred direction.
摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验