Buntine Wray
College of Engineering and Computer Science, VinUniversity, Hanoi 100000, Vietnam.
Faculty of Data Science and AI, Monash University, Clayton, VIC 3800, Australia.
Entropy (Basel). 2022 Nov 22;24(12):1703. doi: 10.3390/e24121703.
Hierarchical stochastic processes, such as the hierarchical Dirichlet process, hold an important position as a modelling tool in statistical machine learning, and are even used in deep neural networks. They allow, for instance, networks of probability vectors to be used in general statistical modelling, intrinsically supporting information sharing through the network. This paper presents a general theory of hierarchical stochastic processes and illustrates its use on the gamma process and the generalised gamma process. In general, most of the convenient properties of hierarchical Dirichlet processes extend to the broader family. The main construction for this corresponds to estimating the moments of an infinitely divisible distribution based on its cumulants. Various equivalences and relationships can then be applied to networks of hierarchical processes. Examples given demonstrate the duplication in non-parametric research, and presents plots of the Pitman-Yor distribution.
分层随机过程,如实数分层狄利克雷过程,在统计机器学习中作为一种建模工具占据重要地位,甚至在深度神经网络中也有应用。例如,它们允许概率向量网络用于一般统计建模,本质上支持通过网络进行信息共享。本文提出了分层随机过程的一般理论,并说明了其在伽马过程和广义伽马过程中的应用。一般来说,分层狄利克雷过程的大多数便利性质都扩展到了更广泛的族。对此的主要构造对应于基于无穷可分分布的累积量估计其矩。然后可以将各种等价关系和关系应用于分层过程网络。给出的例子展示了非参数研究中的重复情况,并给出了皮特曼 - 约尔分布的图表。