Departamento de Química Orgánica e Inorgánica, Instituto Universitario de Biotecnología de Asturias, Universidad de Oviedo, C/Julián Clavería 8, 33006 Oviedo, Spain.
Chemistry. 2010 Sep 24;16(36):11012-9. doi: 10.1002/chem.201001233.
To ensure the quasi-irreversibility of the oxidation of alcohols coupled with the reduction of ketones in a hydrogen-transfer (HT) fashion, stoichiometric amounts of α-halo carbonyl compounds have been employed as hydrogen acceptors. The reason that these substrates lead to quasi-quantitative conversions has been tacitly attributed to both thermodynamic and kinetic effects. To provide a clear rationale for this behavior, we investigate herein the redox equilibrium of a selected series of ketones and 2-propanol by undertaking a study that combines experimental and theoretical approaches. First, the activity of the (R)-specific alcohol dehydrogenase from Lactobacillus brevis (LBADH) with these substrates was studied. The docking of acetophenone/(R)-1-phenyethanol and α-chloroacetophenone/(S)-2-chloro-1-phenylethanol in the active site of the enzyme confirms that there seems to be no structural reason for the lack of reactivity of halohydrins. This assumption is confirmed by the fact that the corresponding aluminum-catalyzed Meerwein-Ponndorf-Verley-Oppenauer (MPVO) reactions afford similar conversions to those obtained with LBADH, showing that the observed reactivity is independent of the catalyst employed. While the initial rates of the enzymatic reductions and the IR ν(C=O) values contradict the general belief that electron-withdrawing groups increase the electrophilicity of the carbonyl group, the calculated ΔG values of the isodesmic redox transformations of these series of ketones/alcohols with 2-propanol/acetone support the thermodynamic control of the reaction. As a result, a general method to predict the degree of conversion obtained in the HT-reduction process of a given ketone based on the IR absorption band of the carbonyl group is proposed, and a strategy to achieve the HT oxidation of halohydrins is also shown.
为了确保醇的氧化和酮的还原在氢转移(HT)方式下具有准不可逆性,已使用化学计量的α-卤代羰基化合物作为氢受体。这些底物导致准定量转化的原因被默认为热力学和动力学效应。为了为此行为提供明确的原理依据,我们通过结合实验和理论方法研究了一系列选定的酮和 2-丙醇的氧化还原平衡。首先,研究了短乳杆菌(LBADH)中(R)-特异性醇脱氢酶与这些底物的活性。苯乙酮/(R)-1-苯乙醇和α-氯苯乙酮/(S)-2-氯-1-苯乙醇在酶活性部位的对接证实,似乎没有结构原因导致卤代醇没有反应性。这一假设得到了以下事实的证实,即相应的铝催化 Meerwein-Ponndorf-Verley-Oppenauer(MPVO)反应提供了与 LBADH 获得的相似转化率,表明观察到的反应性与所使用的催化剂无关。虽然酶还原的初始速率和 IR ν(C=O)值与普遍认为的吸电子基团增加羰基的亲电性的观点相矛盾,但这些系列酮/醇与 2-丙醇/丙酮的异构氧化还原转化的计算ΔG 值支持反应的热力学控制。因此,提出了一种基于给定酮的羰基 IR 吸收带预测 HT 还原过程中转化率的一般方法,并展示了实现卤代醇 HT 氧化的策略。