Suppr超能文献

缺失协变量 Cox 回归中多重填补和完全增广加权估计量的比较。

A comparison of multiple imputation and fully augmented weighted estimators for Cox regression with missing covariates.

机构信息

Division of Biostatistics, Department of Public Health Sciences, School of Medicine, University of California, Davis, CA 95616, USA.

出版信息

Stat Med. 2010 Nov 10;29(25):2592-604. doi: 10.1002/sim.4016.

Abstract

Several approaches exist for handling missing covariates in the Cox proportional hazards model. The multiple imputation (MI) is relatively easy to implement with various software available and results in consistent estimates if the imputation model is correct. On the other hand, the fully augmented weighted estimators (FAWEs) recover a substantial proportion of the efficiency and have the doubly robust property. In this paper, we compare the FAWEs and the MI through a comprehensive simulation study. For the MI, we consider the multiple imputation by chained equation and focus on two imputation methods: Bayesian linear regression imputation and predictive mean matching. Simulation results show that the imputation methods can be rather sensitive to model misspecification and may have large bias when the censoring time depends on the missing covariates. In contrast, the FAWEs allow the censoring time to depend on the missing covariates and are remarkably robust as long as getting either the conditional expectations or the selection probability correct due to the doubly robust property. The comparison suggests that the FAWEs show the potential for being a competitive and attractive tool for tackling the analysis of survival data with missing covariates.

摘要

处理 Cox 比例风险模型中缺失协变量的方法有几种。多重插补(MI)相对容易实施,并且有多种可用的软件,只要插补模型正确,就可以得到一致的估计值。另一方面,完全增广加权估计量(FAWEs)恢复了相当大的效率比例,并且具有双重稳健性。在本文中,我们通过全面的模拟研究比较了 FAWEs 和 MI。对于 MI,我们考虑通过链式方程进行多重插补,并重点关注两种插补方法:贝叶斯线性回归插补和预测均值匹配。模拟结果表明,插补方法对模型的误设定可能非常敏感,并且当删失时间依赖于缺失协变量时,可能会产生很大的偏差。相比之下,FAWEs 允许删失时间依赖于缺失协变量,并且只要由于双重稳健性而正确获得条件期望或选择概率,就具有很强的稳健性。比较表明,FAWEs 有潜力成为处理缺失协变量的生存数据分析的一种有竞争力且有吸引力的工具。

相似文献

2
Cox regression analysis with missing covariates via nonparametric multiple imputation.
Stat Methods Med Res. 2019 Jun;28(6):1676-1688. doi: 10.1177/0962280218772592. Epub 2018 May 2.
3
Multiple imputation in Cox regression when there are time-varying effects of covariates.
Stat Med. 2018 Nov 10;37(25):3661-3678. doi: 10.1002/sim.7842. Epub 2018 Jul 16.
5
Comparison of Imputation Strategies for Incomplete Longitudinal Data in Life-Course Epidemiology.
Am J Epidemiol. 2023 Nov 10;192(12):2075-2084. doi: 10.1093/aje/kwad139.
7
Non-parametric approach for frequentist multiple imputation in survival analysis with missing covariates.
Stat Methods Med Res. 2021 Jul;30(7):1691-1707. doi: 10.1177/09622802211011197. Epub 2021 Jun 10.
8
Multiple imputation for handling missing outcome data when estimating the relative risk.
BMC Med Res Methodol. 2017 Sep 6;17(1):134. doi: 10.1186/s12874-017-0414-5.
9
Multiple imputation of missing covariates for the Cox proportional hazards cure model.
Stat Med. 2016 Nov 20;35(26):4701-4717. doi: 10.1002/sim.7048. Epub 2016 Jul 21.
10
Comparison between inverse-probability weighting and multiple imputation in Cox model with missing failure subtype.
Stat Methods Med Res. 2024 Feb;33(2):344-356. doi: 10.1177/09622802231226328. Epub 2024 Jan 23.

引用本文的文献

1
Multiple Imputation of Missing Covariates When Using the Fine-Gray Model.
Stat Med. 2025 Jul;44(15-17):e70166. doi: 10.1002/sim.70166.
2
Robust best linear weighted estimator with missing covariates in survival analysis.
Stat Med. 2024 Apr 30;43(9):1790-1803. doi: 10.1002/sim.10044. Epub 2024 Feb 25.
3
5
Estimation in the semiparametric accelerated failure time model with missing covariates: improving efficiency through augmentation.
J Am Stat Assoc. 2017;112(519):1221-1235. doi: 10.1080/01621459.2016.1205500. Epub 2017 Apr 25.
6
Multinomial logistic regression with missing outcome data: An application to cancer subtypes.
Stat Med. 2020 Oct 30;39(24):3299-3312. doi: 10.1002/sim.8666. Epub 2020 Jul 6.
7
Accuracy of Five Multiple Imputation Methods in Estimating Prevalence of Type 2 Diabetes based on STEPS Surveys.
J Epidemiol Glob Health. 2020 Mar;10(1):36-41. doi: 10.2991/jegh.k.191207.001.
8
Best linear inverse probability weighted estimation for two-phase designs and missing covariate regression.
Stat Med. 2019 Jul 10;38(15):2783-2796. doi: 10.1002/sim.8141. Epub 2019 Mar 25.
9
Cox regression analysis with missing covariates via nonparametric multiple imputation.
Stat Methods Med Res. 2019 Jun;28(6):1676-1688. doi: 10.1177/0962280218772592. Epub 2018 May 2.
10

本文引用的文献

1
Imputing missing covariate values for the Cox model.
Stat Med. 2009 Jul 10;28(15):1982-98. doi: 10.1002/sim.3618.
2
Multiple imputation: review of theory, implementation and software.
Stat Med. 2007 Jul 20;26(16):3057-77. doi: 10.1002/sim.2787.
3
Using the outcome for imputation of missing predictor values was preferred.
J Clin Epidemiol. 2006 Oct;59(10):1092-101. doi: 10.1016/j.jclinepi.2006.01.009. Epub 2006 Jun 19.
4
6
Comparing proportional hazards and accelerated failure time models for survival analysis.
Stat Med. 2002 Nov 30;21(22):3493-510. doi: 10.1002/sim.1251.
8
Augmented inverse probability weighted estimator for Cox missing covariate regression.
Biometrics. 2001 Jun;57(2):414-9. doi: 10.1111/j.0006-341x.2001.00414.x.
9
Multiple imputation of missing blood pressure covariates in survival analysis.
Stat Med. 1999 Mar 30;18(6):681-94. doi: 10.1002/(sici)1097-0258(19990330)18:6<681::aid-sim71>3.0.co;2-r.
10
Multiple imputation for the Cox proportional hazards model with missing covariates.
Lifetime Data Anal. 1997;3(3):289-98. doi: 10.1023/a:1009657116403.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验