Suppr超能文献

在协变量的时变效应存在时,Cox 回归中的多重插补。

Multiple imputation in Cox regression when there are time-varying effects of covariates.

机构信息

Department of Medical Statistics, London School of Hygiene and Tropical Medicine, London, UK.

London Hub for Trials Methodology Research, MRC Clinical Trials Unit at UCL, Aviation House, London, UK.

出版信息

Stat Med. 2018 Nov 10;37(25):3661-3678. doi: 10.1002/sim.7842. Epub 2018 Jul 16.

Abstract

In Cox regression, it is important to test the proportional hazards assumption and sometimes of interest in itself to study time-varying effects (TVEs) of covariates. TVEs can be investigated with log hazard ratios modelled as a function of time. Missing data on covariates are common and multiple imputation is a popular approach to handling this to avoid the potential bias and efficiency loss resulting from a "complete-case" analysis. Two multiple imputation methods have been proposed for when the substantive model is a Cox proportional hazards regression: an approximate method (Imputing missing covariate values for the Cox model in Statistics in Medicine (2009) by White and Royston) and a substantive-model-compatible method (Multiple imputation of covariates by fully conditional specification: accommodating the substantive model in Statistical Methods in Medical Research (2015) by Bartlett et al). At present, neither accommodates TVEs of covariates. We extend them to do so for a general form for the TVEs and give specific details for TVEs modelled using restricted cubic splines. Simulation studies assess the performance of the methods under several underlying shapes for TVEs. Our proposed methods give approximately unbiased TVE estimates for binary covariates with missing data, but for continuous covariates, the substantive-model-compatible method performs better. The methods also give approximately correct type I errors in the test for proportional hazards when there is no TVE and gain power to detect TVEs relative to complete-case analysis. Ignoring TVEs at the imputation stage results in biased TVE estimates, incorrect type I errors, and substantial loss of power in detecting TVEs. We also propose a multivariable TVE model selection algorithm. The methods are illustrated using data from the Rotterdam Breast Cancer Study. R code is provided.

摘要

在 Cox 回归中,检验比例风险假设很重要,有时研究协变量的时变效应(TVE)本身也很有趣。TVE 可以通过将对数风险比建模为时间的函数来研究。协变量的缺失数据很常见,多重插补是一种处理此问题的流行方法,可以避免由于“完整病例”分析而导致的潜在偏差和效率损失。当实质性模型是 Cox 比例风险回归时,已经提出了两种用于多重插补的方法:一种是近似方法(在《医学统计中的 Cox 模型缺失协变量值的插补》(2009 年,White 和 Royston)中提出)和一种实质性模型兼容方法(通过完全条件规范对协变量进行多重插补:在《医学研究中的统计方法》(2015 年,Bartlett 等人)中提出的实质性模型中)。目前,这两种方法都不适应 TVE 的协变量。我们将它们扩展到适用于 TVE 的一般形式,并为使用受限立方样条建模的 TVE 提供具体细节。模拟研究评估了在几种潜在 TVE 形状下这些方法的性能。我们提出的方法对于具有缺失数据的二元协变量,可以给出近似无偏的 TVE 估计,但对于连续协变量,实质性模型兼容方法的性能更好。当不存在 TVE 时,这些方法在检验比例风险时也能给出近似正确的Ⅰ型错误,并相对于完整病例分析获得检测 TVE 的能力。在插补阶段忽略 TVE 会导致 TVE 估计有偏差、Ⅰ型错误不正确,并且检测 TVE 的能力大大降低。我们还提出了一种多变量 TVE 模型选择算法。该方法使用鹿特丹乳腺癌研究的数据进行说明。提供了 R 代码。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d80b/6220767/237349596fb3/SIM-37-3661-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验