Suppr超能文献

开发一个“元模型”来解决缺失数据,预测患者特定的癌症生存情况,并为临床决策支持提供基础。

Development of a "meta-model" to address missing data, predict patient-specific cancer survival and provide a foundation for clinical decision support.

机构信息

Independent Consultant, (Somerville, MA) on Behalf of Roche Diagnostics Corporation, Indianapolis, Indiana, USA.

Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA.

出版信息

J Am Med Inform Assoc. 2021 Mar 1;28(3):605-615. doi: 10.1093/jamia/ocaa254.

Abstract

OBJECTIVE

Like most real-world data, electronic health record (EHR)-derived data from oncology patients typically exhibits wide interpatient variability in terms of available data elements. This interpatient variability leads to missing data and can present critical challenges in developing and implementing predictive models to underlie clinical decision support for patient-specific oncology care. Here, we sought to develop a novel ensemble approach to addressing missing data that we term the "meta-model" and apply the meta-model to patient-specific cancer prognosis.

MATERIALS AND METHODS

Using real-world data, we developed a suite of individual random survival forest models to predict survival in patients with advanced lung cancer, colorectal cancer, and breast cancer. Individual models varied by the predictor data used. We combined models for each cancer type into a meta-model that predicted survival for each patient using a weighted mean of the individual models for which the patient had all requisite predictors.

RESULTS

The meta-model significantly outperformed many of the individual models and performed similarly to the best performing individual models. Comparisons of the meta-model to a more traditional imputation-based method of addressing missing data supported the meta-model's utility.

CONCLUSIONS

We developed a novel machine learning-based strategy to underlie clinical decision support and predict survival in cancer patients, despite missing data. The meta-model may more generally provide a tool for addressing missing data across a variety of clinical prediction problems. Moreover, the meta-model may address other challenges in clinical predictive modeling including model extensibility and integration of predictive algorithms trained across different institutions and datasets.

摘要

目的

与大多数真实世界的数据一样,肿瘤患者的电子健康记录 (EHR) 衍生数据在可用数据元素方面通常表现出广泛的患者间变异性。这种患者间的变异性导致数据缺失,并在开发和实施预测模型以支持基于患者的肿瘤学护理的临床决策支持方面带来了重大挑战。在这里,我们试图开发一种解决缺失数据的新方法,我们称之为“元模型”,并将元模型应用于患者特定的癌症预后。

材料和方法

使用真实世界的数据,我们开发了一套个体随机生存森林模型,以预测晚期肺癌、结直肠癌和乳腺癌患者的生存情况。个体模型因使用的预测数据而异。我们将每种癌症类型的模型组合到一个元模型中,该模型使用患者具有所有必需预测因子的个体模型的加权平均值来预测每个患者的生存情况。

结果

元模型显著优于许多个体模型,并且表现与表现最佳的个体模型相当。元模型与更传统的基于插补的缺失数据处理方法的比较支持了元模型的实用性。

结论

我们开发了一种新的基于机器学习的策略,用于支持临床决策并预测癌症患者的生存情况,尽管存在数据缺失。元模型可能更普遍地为各种临床预测问题提供解决缺失数据的工具。此外,元模型可能解决临床预测建模中的其他挑战,包括模型可扩展性以及在不同机构和数据集上训练的预测算法的集成。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b63f/7936528/86ee4d7d63fd/ocaa254f1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验