Department of Computer Science, University of Toronto, Toronto, Ontario, Canada.
PLoS One. 2010 Aug 23;5(8):e12063. doi: 10.1371/journal.pone.0012063.
Adverse drug reactions (ADR), also known as side-effects, are complex undesired physiologic phenomena observed secondary to the administration of pharmaceuticals. Several phenomena underlie the emergence of each ADR; however, a dominant factor is the drug's ability to modulate one or more biological pathways. Understanding the biological processes behind the occurrence of ADRs would lead to the development of safer and more effective drugs. At present, no method exists to discover these ADR-pathway associations. In this paper we introduce a computational framework for identifying a subset of these associations based on the assumption that drugs capable of modulating the same pathway may induce similar ADRs. Our model exploits multiple information resources. First, we utilize a publicly available dataset pairing drugs with their observed ADRs. Second, we identify putative protein targets for each drug using the protein structure database and in-silico virtual docking. Third, we label each protein target with its known involvement in one or more biological pathways. Finally, the relationships among these information sources are mined using multiple stages of logistic-regression while controlling for over-fitting and multiple-hypothesis testing. As proof-of-concept, we examined a dataset of 506 ADRs, 730 drugs, and 830 human protein targets. Our method yielded 185 ADR-pathway associations of which 45 were selected to undergo a manual literature review. We found 32 associations to be supported by the scientific literature.
药物不良反应(ADR),也称为副作用,是指在使用药物后观察到的复杂的、非预期的生理现象。每种 ADR 的出现都有几个现象作为基础;然而,一个主要因素是药物调节一个或多个生物途径的能力。了解 ADR 发生背后的生物学过程将导致更安全、更有效的药物的开发。目前,还没有发现这些 ADR-途径关联的方法。在本文中,我们介绍了一种基于假设的计算框架,该框架假设能够调节相同途径的药物可能会引起相似的 ADR,从而识别这些关联的子集。我们的模型利用了多种信息资源。首先,我们利用一个公开的数据集,将药物与其观察到的 ADR 配对。其次,我们使用蛋白质结构数据库和虚拟对接技术来识别每个药物的潜在蛋白质靶标。第三,我们将每个蛋白质靶标标记为其已知的参与一个或多个生物途径。最后,使用多个阶段的逻辑回归来挖掘这些信息源之间的关系,同时控制过度拟合和多重假设检验。作为概念验证,我们检查了一个包含 506 种 ADR、730 种药物和 830 个人类蛋白质靶标的数据集。我们的方法产生了 185 种 ADR-途径关联,其中 45 种被选中进行手动文献综述。我们发现 32 种关联得到了科学文献的支持。