Vilar Santiago, Tatonetti Nicholas P, Hripcsak George
Department of Biomedical Informatics, Columbia University Medical Center, New York, NY, USA.
Sci Rep. 2015 Mar 6;5:8809. doi: 10.1038/srep08809.
Adverse drugs events (ADEs) detection constitutes a considerable concern in patient safety and public health care. For this reason, it is important to develop methods that improve ADE signal detection in pharmacovigilance databases. Our objective is to apply 3D pharmacophoric similarity models to enhance ADE recognition in Offsides, a pharmacovigilance resource with drug-ADE associations extracted from the FDA Adverse Event Reporting System (FAERS). We developed a multi-ADE predictor implementing 3D drug similarity based on a pharmacophoric approach, with an ADE reference standard extracted from the SIDER database. The results showed that the application of our 3D multi-type ADE predictor to the pharmacovigilance data in Offsides improved ADE identification and generated enriched sets of drug-ADE signals. The global ROC curve for the Offsides ADE candidates ranked with the 3D similarity score showed an area of 0.7. The 3D predictor also allows the identification of the most similar drug that causes the ADE under study, which could provide hypotheses about mechanisms of action and ADE etiology. Our method is useful in drug development, screening potential adverse effects in experimental drugs, and in drug safety, applicable to the evaluation of ADE signals selected through pharmacovigilance data mining.
药物不良事件(ADEs)检测是患者安全和公共卫生保健领域的一个重大关注点。因此,开发能够改进药物警戒数据库中ADE信号检测的方法非常重要。我们的目标是应用三维药效团相似性模型来增强在Offsides中对ADE的识别,Offsides是一个药物警戒资源库,其中的药物 - ADE关联是从美国食品药品监督管理局不良事件报告系统(FAERS)中提取的。我们基于药效团方法开发了一种多ADE预测器,该预测器实现了基于三维药物相似性的功能,并从SIDER数据库中提取了ADE参考标准。结果表明,将我们的三维多类型ADE预测器应用于Offsides中的药物警戒数据,改善了ADE识别,并生成了丰富的药物 - ADE信号集。根据三维相似性评分对Offsides ADE候选物进行排序得到的全局ROC曲线显示面积为0.7。三维预测器还能够识别导致所研究ADE的最相似药物,这可以为作用机制和ADE病因提供假设。我们的方法在药物开发、筛选实验药物中的潜在不良反应以及药物安全性方面很有用,适用于评估通过药物警戒数据挖掘选择的ADE信号。