Suppr超能文献

近端肾小管细胞内环境稳定建模:追踪管腔液流变化

Modeling proximal tubule cell homeostasis: tracking changes in luminal flow.

作者信息

Weinstein Alan M, Sontag Eduardo D

机构信息

Department of Physiology and Biophysics, Weill Medical College of Cornell University, New York, NY 10021, USA.

出版信息

Bull Math Biol. 2009 Aug;71(6):1285-322. doi: 10.1007/s11538-009-9402-1. Epub 2009 Mar 12.

Abstract

During normal kidney function, there are routinely wide swings in proximal tubule fluid flow and proportional changes in Na(+) reabsorption across tubule epithelial cells. This "glomerulotubular balance" occurs in the absence of any substantial change in cell volume, and is thus a challenge to coordinate luminal membrane solute entry with peritubular membrane solute exit. In this work, linear optimal control theory is applied to generate a configuration of regulated transporters that could achieve this result. A previously developed model of rat proximal tubule epithelium is linearized about a physiologic reference condition; the approximate linear system is recast as a dynamical system; and a Riccati equation is solved to yield the optimal linear feedback that stabilizes Na(+) flux, cell volume, and cell pH. The first observation is that optimal feedback control is largely consigned to three physiologic variables, cell volume, cell electrical potential, and lateral intercellular hydrostatic pressure. Parameter modulation by cell volume stabilizes cell volume; parameter modulation by electrical potential or interspace pressure act to stabilize Na(+) flux and cell pH. This feedback control is utilized in a tracking problem, in which reabsorptive Na(+) flux varies over a factor of two, in order to represent a substantial excursion of glomerulotubular balance. The resulting control parameters consist of two terms, an autonomous term and a feedback term, and both terms include transporters on both luminal and peritubular cell membranes. Overall, the increase in Na(+) flux is achieved with upregulation of luminal Na(+)/H(+) exchange and Na(+)-glucose cotransport, with increased peritubular Na(+)-3HCO(3)(-) and K(+)-Cl(-) cotransport, and with increased Na(+), K(+)-ATPase activity. The configuration of activated transporters emerges as a testable hypothesis of the molecular basis for glomerulotubular balance. It is suggested that the autonomous control component at each cell membrane could represent the cytoskeletal effects of luminal flow.

摘要

在正常肾功能期间,近端小管液流通常会有较大波动,并且跨小管上皮细胞的钠(Na⁺)重吸收也会有相应变化。这种“球管平衡”在细胞体积没有任何实质性变化的情况下发生,因此要协调管腔膜溶质进入与肾小管周围膜溶质排出是一项挑战。在这项研究中,应用线性最优控制理论来生成一种可实现此结果的调节转运体配置。将先前开发的大鼠近端小管上皮模型在生理参考条件下进行线性化;将近似线性系统重铸为动态系统;并求解黎卡提方程以产生稳定Na⁺通量、细胞体积和细胞pH的最优线性反馈。第一个观察结果是,最优反馈控制主要涉及三个生理变量,即细胞体积、细胞电势和细胞间侧向静水压力。细胞体积对参数的调节可稳定细胞体积;电势或间隙压力对参数的调节作用是稳定Na⁺通量和细胞pH。这种反馈控制用于一个跟踪问题,其中重吸收的Na⁺通量变化两倍,以代表球管平衡的大幅波动。所得的控制参数由两项组成,一项自主项和一项反馈项,且两项都包括管腔和肾小管周围细胞膜上的转运体。总体而言,通过上调管腔Na⁺/H⁺交换和Na⁺-葡萄糖共转运、增加肾小管周围Na⁺-3HCO₃⁻和K⁺-Cl⁻共转运以及增加Na⁺,K⁺-ATP酶活性来实现Na⁺通量的增加。激活的转运体配置成为球管平衡分子基础的一个可检验假设。有人提出,每个细胞膜上的自主控制成分可能代表管腔液流的细胞骨架效应。

相似文献

3
Flow-dependent transport in a mathematical model of rat proximal tubule.大鼠近端肾小管数学模型中的流量依赖性转运
Am J Physiol Renal Physiol. 2007 Apr;292(4):F1164-81. doi: 10.1152/ajprenal.00392.2006. Epub 2007 Jan 9.
5
7
Modeling epithelial cell homeostasis: steady-state analysis.
Bull Math Biol. 1999 Nov;61(6):1065-91. doi: 10.1006/bulm.1999.0127.
8
A mathematical model of rat proximal tubule and loop of Henle.大鼠近端肾小管和髓袢的数学模型。
Am J Physiol Renal Physiol. 2015 May 15;308(10):F1076-97. doi: 10.1152/ajprenal.00504.2014. Epub 2015 Feb 18.
9
Ammonia transport in a mathematical model of rat proximal tubule.大鼠近端肾小管数学模型中的氨转运
Am J Physiol. 1994 Aug;267(2 Pt 2):F237-48. doi: 10.1152/ajprenal.1994.267.2.F237.

引用本文的文献

3
A model of calcium transport and regulation in the proximal tubule.近端小管中钙转运和调节的模型。
Am J Physiol Renal Physiol. 2018 Oct 1;315(4):F942-F953. doi: 10.1152/ajprenal.00129.2018. Epub 2018 May 30.
5
Flow stimulated endocytosis in the proximal tubule.近端小管中流动刺激的内吞作用。
Curr Opin Nephrol Hypertens. 2015 Jul;24(4):359-65. doi: 10.1097/MNH.0000000000000135.
8
Mechanotransduction in the renal tubule.肾单位中的机械转导。
Am J Physiol Renal Physiol. 2010 Dec;299(6):F1220-36. doi: 10.1152/ajprenal.00453.2010. Epub 2010 Sep 1.
9
Modeling transport in the kidney: investigating function and dysfunction.建模肾脏中的转运:研究功能和功能障碍。
Am J Physiol Renal Physiol. 2010 Mar;298(3):F475-84. doi: 10.1152/ajprenal.00501.2009. Epub 2009 Nov 4.

本文引用的文献

1
Modeling epithelial cell homeostasis: steady-state analysis.
Bull Math Biol. 1999 Nov;61(6):1065-91. doi: 10.1006/bulm.1999.0127.
2
Flow-dependent transport in a mathematical model of rat proximal tubule.大鼠近端肾小管数学模型中的流量依赖性转运
Am J Physiol Renal Physiol. 2007 Apr;292(4):F1164-81. doi: 10.1152/ajprenal.00392.2006. Epub 2007 Jan 9.
4
Mechanosensory function of microvilli of the kidney proximal tubule.肾近端小管微绒毛的机械感觉功能。
Proc Natl Acad Sci U S A. 2004 Aug 31;101(35):13068-73. doi: 10.1073/pnas.0405179101. Epub 2004 Aug 19.
7
A hydrodynamic mechanosensory hypothesis for brush border microvilli.一种关于刷状缘微绒毛的流体动力机械传感假说。
Am J Physiol Renal Physiol. 2000 Oct;279(4):F698-712. doi: 10.1152/ajprenal.2000.279.4.F698.
8
The diversity of volume regulatory mechanisms.容量调节机制的多样性。
Cell Physiol Biochem. 1998;8(1-2):1-45. doi: 10.1159/000016269.
10
Functional significance of cell volume regulatory mechanisms.细胞体积调节机制的功能意义。
Physiol Rev. 1998 Jan;78(1):247-306. doi: 10.1152/physrev.1998.78.1.247.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验