Département de Physiologie, Faculté de Médecine, Université de Montréal, Station Centre-ville, Montréal, Québec, Canada.
J Neurosci. 2010 Sep 1;30(35):11870-82. doi: 10.1523/JNEUROSCI.3165-10.2010.
In the nervous system, the induction of plasticity is coded by patterns of synaptic activity. Glial cells are now recognized as dynamic partners in a wide variety of brain functions, including the induction and modulation of various forms of synaptic plasticity. However, it appears that glial cells are usually activated by stereotyped, sustained neuronal activity, and little attention has been given to more subtle changes in the patterns of synaptic activation. To this end, we used the mouse neuromuscular junction as a simple and useful model to study glial modulation of synaptic plasticity. We used two patterns of motor nerve stimulation that mimic endogenous motor-neuronal activity. A continuous stimulation induced a post-tetanic potentiation and a phasic Ca(2+) response in perisynaptic Schwann cells (PSCs), glial cells at this synapse. A bursting pattern of activity induced a post-tetanic depression and oscillatory Ca(2+) responses in PSCs. The different Ca(2+) responses in PSCs indicate that they decode the pattern of synaptic activity. Furthermore, the chelation of glial Ca(2+) impaired the production of the sustained plasticity events indicating that PSCs govern the outcome of synaptic plasticity. The mechanisms involved were studied using direct photo-activation of PSCs with caged Ca(2+) that mimicked endogenous plasticity. Using specific pharmacology and transgenic knock-out animals for adenosine receptors, we showed that the sustained depression was mediated by A1 receptors while the sustained potentiation is mediated by A(2A) receptors. These results demonstrate that glial cells decode the pattern of synaptic activity and subsequently provide bidirectional feedback to synapses.
在神经系统中,可塑性的诱导是由突触活动模式编码的。胶质细胞现在被认为是广泛的脑功能的动态伙伴,包括各种形式的突触可塑性的诱导和调节。然而,胶质细胞似乎通常是由刻板的、持续的神经元活动激活的,而对于突触激活模式的更微妙的变化则很少关注。为此,我们使用小鼠的神经肌肉接头作为一个简单而有用的模型来研究胶质细胞对突触可塑性的调节。我们使用两种模拟内源性运动神经元活动的运动神经刺激模式。连续刺激在突触旁施万细胞(PSCs)中诱导出强直后增强和相Ca(2+)反应,PSCs 是这个突触的胶质细胞。爆发式的活动模式在 PSCs 中诱导出强直后抑制和振荡的 Ca(2+)反应。PSCs 中的不同 Ca(2+)反应表明它们对突触活动模式进行解码。此外,胶质细胞 Ca(2+)螯合会损害持续可塑性事件的产生,这表明 PSCs 控制着突触可塑性的结果。我们使用笼状 Ca(2+)直接光激活 PSCs 来研究涉及的机制,这种方法模拟了内源性的可塑性。使用特定的药理学和针对腺苷受体的转基因敲除动物,我们表明持续的抑制是由 A1 受体介导的,而持续的增强是由 A(2A)受体介导的。这些结果表明,胶质细胞对突触活动模式进行解码,随后为突触提供双向反馈。