Suppr超能文献

酵母中 RNA 二级结构的全基因组测量。

Genome-wide measurement of RNA secondary structure in yeast.

机构信息

Dept. of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot 76100, Israel.

Howard Hughes Medical Institute, Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA 94305, USA.

出版信息

Nature. 2010 Sep 2;467(7311):103-7. doi: 10.1038/nature09322.

Abstract

The structures of RNA molecules are often important for their function and regulation, yet there are no experimental techniques for genome-scale measurement of RNA structure. Here we describe a novel strategy termed parallel analysis of RNA structure (PARS), which is based on deep sequencing fragments of RNAs that were treated with structure-specific enzymes, thus providing simultaneous in vitro profiling of the secondary structure of thousands of RNA species at single nucleotide resolution. We apply PARS to profile the secondary structure of the messenger RNAs (mRNAs) of the budding yeast Saccharomyces cerevisiae and obtain structural profiles for over 3,000 distinct transcripts. Analysis of these profiles reveals several RNA structural properties of yeast transcripts, including the existence of more secondary structure over coding regions compared with untranslated regions, a three-nucleotide periodicity of secondary structure across coding regions and an anti-correlation between the efficiency with which an mRNA is translated and the structure over its translation start site. PARS is readily applicable to other organisms and to profiling RNA structure in diverse conditions, thus enabling studies of the dynamics of secondary structure at a genomic scale.

摘要

RNA 分子的结构通常对其功能和调控很重要,但目前还没有用于全基因组规模测量 RNA 结构的实验技术。本文描述了一种新的策略,称为 RNA 结构并行分析(parallel analysis of RNA structure,PARS),它基于用结构特异性酶处理的 RNA 的深度测序片段,从而可以在体外同时以单核苷酸分辨率对数千种 RNA 种类的二级结构进行分析。我们将 PARS 应用于研究出芽酵母酿酒酵母(Saccharomyces cerevisiae)信使 RNA(mRNA)的二级结构,并获得了 3000 多个不同转录本的结构图谱。对这些图谱的分析揭示了酵母转录本的一些 RNA 结构特性,包括与非翻译区相比,编码区具有更多的二级结构,编码区的二级结构具有三核苷酸周期性,以及 mRNA 的翻译效率与其翻译起始位点的结构之间存在反相关。PARS 易于应用于其他生物体,并可用于在不同条件下分析 RNA 结构,从而能够在基因组范围内研究二级结构的动态。

相似文献

1
Genome-wide measurement of RNA secondary structure in yeast.
Nature. 2010 Sep 2;467(7311):103-7. doi: 10.1038/nature09322.
2
RNA secondary structure profiling in zebrafish reveals unique regulatory features.
BMC Genomics. 2018 Feb 15;19(1):147. doi: 10.1186/s12864-018-4497-0.
3
Sequence-structure relationships in yeast mRNAs.
Nucleic Acids Res. 2012 Feb;40(3):956-62. doi: 10.1093/nar/gkr790. Epub 2011 Sep 27.
4
Genome-wide probing of RNA structure reveals active unfolding of mRNA structures in vivo.
Nature. 2014 Jan 30;505(7485):701-5. doi: 10.1038/nature12894. Epub 2013 Dec 15.
6
Transcriptome-wide mapping of pseudouridines: pseudouridine synthases modify specific mRNAs in S. cerevisiae.
PLoS One. 2014 Oct 29;9(10):e110799. doi: 10.1371/journal.pone.0110799. eCollection 2014.
8
Genome-wide mapping of RNA structure using nuclease digestion and high-throughput sequencing.
Nat Protoc. 2013 May;8(5):849-69. doi: 10.1038/nprot.2013.045. Epub 2013 Apr 4.
9
In vivo genome-wide profiling of RNA secondary structure reveals novel regulatory features.
Nature. 2014 Jan 30;505(7485):696-700. doi: 10.1038/nature12756. Epub 2013 Nov 24.

引用本文的文献

1
3
VariantFoldRNA: a flexible, containerized, and scalable pipeline for genome-wide riboSNitch prediction.
NAR Genom Bioinform. 2025 May 29;7(2):lqaf066. doi: 10.1093/nargab/lqaf066. eCollection 2025 Jun.
4
RNA secondary structure prediction by conducting multi-class classifications.
Comput Struct Biotechnol J. 2025 Apr 4;27:1449-1459. doi: 10.1016/j.csbj.2025.04.001. eCollection 2025.
6
Exploring the challenges of RNAi-based strategies for crop protection.
Adv Biotechnol (Singap). 2024 Jul 15;2(3):23. doi: 10.1007/s44307-024-00031-x.
9
Comparative modeling reveals the molecular determinants of aneuploidy fitness cost in a wild yeast model.
Cell Genom. 2024 Oct 9;4(10):100656. doi: 10.1016/j.xgen.2024.100656. Epub 2024 Sep 23.
10
Current limitations in predicting mRNA translation with deep learning models.
Genome Biol. 2024 Aug 20;25(1):227. doi: 10.1186/s13059-024-03369-6.

本文引用的文献

1
Architecture and secondary structure of an entire HIV-1 RNA genome.
Nature. 2009 Aug 6;460(7256):711-6. doi: 10.1038/nature08237.
2
Coding-sequence determinants of gene expression in Escherichia coli.
Science. 2009 Apr 10;324(5924):255-8. doi: 10.1126/science.1170160.
3
Genome-wide analysis in vivo of translation with nucleotide resolution using ribosome profiling.
Science. 2009 Apr 10;324(5924):218-23. doi: 10.1126/science.1168978. Epub 2009 Feb 12.
4
A small stem loop element directs internal initiation of the URE2 internal ribosome entry site in Saccharomyces cerevisiae.
J Biol Chem. 2008 Jul 4;283(27):19011-25. doi: 10.1074/jbc.M803109200. Epub 2008 May 6.
5
The transcriptional landscape of the yeast genome defined by RNA sequencing.
Science. 2008 Jun 6;320(5881):1344-9. doi: 10.1126/science.1158441. Epub 2008 May 1.
6
Probing RNA structure with chemical reagents and enzymes.
Curr Protoc Nucleic Acid Chem. 2001 May;Chapter 6:Unit 6.1. doi: 10.1002/0471142700.nc0601s00.
7
The signal sequence coding region promotes nuclear export of mRNA.
PLoS Biol. 2007 Dec;5(12):e322. doi: 10.1371/journal.pbio.0050322.
8
The role of site accessibility in microRNA target recognition.
Nat Genet. 2007 Oct;39(10):1278-84. doi: 10.1038/ng2135. Epub 2007 Sep 23.
9
Functional demarcation of active and silent chromatin domains in human HOX loci by noncoding RNAs.
Cell. 2007 Jun 29;129(7):1311-23. doi: 10.1016/j.cell.2007.05.022.
10
A periodic pattern of mRNA secondary structure created by the genetic code.
Nucleic Acids Res. 2006 May 8;34(8):2428-37. doi: 10.1093/nar/gkl287. Print 2006.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验