Suppr超能文献

可训练的结构-活性关系模型用于 CYP3A4 抑制的虚拟筛选。

Trainable structure-activity relationship model for virtual screening of CYP3A4 inhibition.

机构信息

ACD/Labs Inc., Vilnius, Lithuania.

出版信息

J Comput Aided Mol Des. 2010 Nov;24(11):891-906. doi: 10.1007/s10822-010-9381-1. Epub 2010 Sep 1.

Abstract

A new structure-activity relationship model predicting the probability for a compound to inhibit human cytochrome P450 3A4 has been developed using data for >800 compounds from various literature sources and tested on PubChem screening data. Novel GALAS (Global, Adjusted Locally According to Similarity) modeling methodology has been used, which is a combination of baseline global QSAR model and local similarity based corrections. GALAS modeling method allows forecasting the reliability of prediction thus defining the model applicability domain. For compounds within this domain the statistical results of the final model approach the data consistency between experimental data from literature and PubChem datasets with the overall accuracy of 89%. However, the original model is applicable only for less than a half of PubChem database. Since the similarity correction procedure of GALAS modeling method allows straightforward model training, the possibility to expand the applicability domain has been investigated. Experimental data from PubChem dataset served as an example of in-house high-throughput screening data. The model successfully adapted itself to both data classified using the same and different IC₅₀ threshold compared with the training set. In addition, adjustment of the CYP3A4 inhibition model to compounds with a novel chemical scaffold has been demonstrated. The reported GALAS model is proposed as a useful tool for virtual screening of compounds for possible drug-drug interactions even prior to the actual synthesis.

摘要

已经开发了一种新的结构-活性关系模型,用于预测化合物抑制人细胞色素 P450 3A4 的可能性,该模型使用了来自各种文献来源的 >800 种化合物的数据,并在 PubChem 筛选数据上进行了测试。使用了新颖的 GALAS(全局,根据相似性进行局部调整)建模方法,它是基线全局 QSAR 模型和基于相似性的局部校正的组合。GALAS 建模方法允许预测预测的可靠性,从而定义模型的适用域。对于该域内的化合物,最终模型的统计结果接近文献和 PubChem 数据集之间实验数据的一致性,整体准确性为 89%。然而,原始模型仅适用于 PubChem 数据库的不到一半。由于 GALAS 建模方法的相似性校正程序允许直接进行模型训练,因此研究了扩展适用域的可能性。PubChem 数据集的实验数据用作内部高通量筛选数据的示例。该模型成功地适应了与训练集相比使用相同和不同 IC₅₀ 阈值分类的数据。此外,还证明了对具有新型化学结构骨架的化合物调整 CYP3A4 抑制模型的能力。所报道的 GALAS 模型被提议作为一种有用的工具,用于在实际合成之前对可能发生药物相互作用的化合物进行虚拟筛选。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验