Buck Institute for Age Research, 8001 Redwood Blvd, Novato, CA 94945, USA.
Free Radic Res. 2011 Jan;45(1):53-8. doi: 10.3109/10715762.2010.509398. Epub 2010 Sep 6.
Impairment of the mitochondrial electron transport chain has been suggested to be a critical factor in the neuropathogenesis of Parkinson's disease (PD), as inhibition of mitochondrial complex I (CI) activity is consistently detected in PD patients as well as in mitochondrial toxin models of the disorder. Increased levels of various reactive oxygen and nitrogen species appear to contribute to CI inhibition and mitochondrial dysfunction in PD. Reactive nitrogen species (RNS) such as nitric oxide (NO) and its metabolite peroxynitrite (PN) may inhibit CI activity via several different mechanisms including S-nitrosylation, nitration, and protein thiol formation. Studies using various cell and animal PD models have demonstrated that selective mitochondrial CI inhibition in dopaminergic cells may be due to both NO-mediated S-nitrosylation and nitration of CI sub-units. Strategies to modulate mitochondrial NO levels will therefore likely be a promising approach to enhance mitochondrial function and protect dopaminergic neurons against oxidative or nitrosative insult.
线粒体电子传递链的损伤被认为是帕金森病(PD)神经发病机制的一个关键因素,因为在 PD 患者以及该疾病的线粒体毒素模型中一致检测到线粒体复合物 I(CI)活性的抑制。各种活性氧和氮物种的增加水平似乎有助于 PD 中的 CI 抑制和线粒体功能障碍。活性氮物种(RNS)如一氧化氮(NO)及其代谢物过氧亚硝酸盐(PN)可以通过几种不同的机制抑制 CI 活性,包括 S-亚硝酰化、硝化和蛋白质巯基形成。使用各种细胞和动物 PD 模型的研究表明,多巴胺能细胞中的选择性线粒体 CI 抑制可能是由于 NO 介导的 CI 亚单位的 S-亚硝酰化和硝化。因此,调节线粒体 NO 水平的策略可能是增强线粒体功能和保护多巴胺能神经元免受氧化或硝化损伤的有希望的方法。