Suppr超能文献

哺乳动物烟酰胺腺嘌呤二核苷酸-泛醌氧化还原酶(复合物 I)的动力学和调节。

Kinetics and regulation of mammalian NADH-ubiquinone oxidoreductase (Complex I).

机构信息

Biotechnology and Bioengineering Center and Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.

出版信息

Biophys J. 2010 Sep 8;99(5):1426-36. doi: 10.1016/j.bpj.2010.06.063.

Abstract

NADH-ubiquinone oxidoreductase (Complex I, European Commission No. 1.6.5.3) is one of the respiratory complexes that generate the proton-motive force required for the synthesis of ATP in mitochondria. The catalytic mechanism of Complex I has not been well understood, due to the complicated structure of this enzyme. Here, we develop a kinetic model for Complex I that accounts for electron transfer from NADH to ubiquinone through protein-bound prosthetic groups, which is coupled to the translocation of protons across the inner mitochondrial membrane. The model is derived based on the tri-bi enzyme mechanism combined with a simple model of the conformational changes associated with proton transport. To study the catalytic mechanism, parameter values are estimated by analyzing kinetic data. The model is further validated by independent data sets from additional experiments, effectively explaining the effect of pH on enzyme activity. Results imply that matrix pH significantly affects the enzyme turnover processes. The overall kinetic analysis demonstrates a hybrid ping-pong rapid-equilibrium random bi-bi mechanism, consolidating the characteristics from previously reported kinetic mechanisms and data.

摘要

烟酰胺腺嘌呤二核苷酸-泛醌氧化还原酶(复合物 I,欧洲委员会编号 1.6.5.3)是一种呼吸复合物,它产生质子动力势,为线粒体中 ATP 的合成提供所需能量。由于该酶的复杂结构,复合物 I 的催化机制尚未得到很好的理解。在这里,我们开发了一种复合物 I 的动力学模型,该模型考虑了通过蛋白结合辅基从 NADH 到泛醌的电子转移,这与质子穿过线粒体内膜的转运相偶联。该模型是基于三酶机制结合与质子传输相关的构象变化的简单模型推导而来的。为了研究催化机制,通过分析动力学数据来估计参数值。该模型进一步通过来自其他实验的独立数据集进行验证,有效地解释了 pH 值对酶活性的影响。结果表明,基质 pH 值显著影响酶的周转过程。整体动力学分析表明,混合乒乓快速平衡随机双酶机制,整合了先前报道的动力学机制和数据的特征。

相似文献

1
Kinetics and regulation of mammalian NADH-ubiquinone oxidoreductase (Complex I).
Biophys J. 2010 Sep 8;99(5):1426-36. doi: 10.1016/j.bpj.2010.06.063.
2
Deactivation of mitochondrial NADH:ubiquinone oxidoreductase (respiratory complex I): Extrinsically affecting factors.
Biochim Biophys Acta Bioenerg. 2020 Aug 1;1861(8):148207. doi: 10.1016/j.bbabio.2020.148207. Epub 2020 Apr 18.
5
Correlating kinetic and structural data on ubiquinone binding and reduction by respiratory complex I.
Proc Natl Acad Sci U S A. 2017 Nov 28;114(48):12737-12742. doi: 10.1073/pnas.1714074114. Epub 2017 Nov 13.
10
Respiratory Complex I in and Pumps Four Protons across the Membrane for Every NADH Oxidized.
J Biol Chem. 2017 Mar 24;292(12):4987-4995. doi: 10.1074/jbc.M116.771899. Epub 2017 Feb 7.

引用本文的文献

2
Differential effects of buffer pH on Ca(2+)-induced ROS emission with inhibited mitochondrial complexes I and III.
Front Physiol. 2015 Mar 10;6:58. doi: 10.3389/fphys.2015.00058. eCollection 2015.
3
Determination of the catalytic mechanism for mitochondrial malate dehydrogenase.
Biophys J. 2015 Jan 20;108(2):408-19. doi: 10.1016/j.bpj.2014.11.3467.
4
A pH-dependent kinetic model of dihydrolipoamide dehydrogenase from multiple organisms.
Biophys J. 2014 Dec 16;107(12):2993-3007. doi: 10.1016/j.bpj.2014.09.025.
5
Determining the origins of superoxide and hydrogen peroxide in the mammalian NADH:ubiquinone oxidoreductase.
Free Radic Biol Med. 2014 Dec;77:121-9. doi: 10.1016/j.freeradbiomed.2014.08.023. Epub 2014 Sep 16.
6
A computational model of reactive oxygen species and redox balance in cardiac mitochondria.
Biophys J. 2013 Aug 20;105(4):1045-56. doi: 10.1016/j.bpj.2013.07.006.
7
A unifying kinetic framework for modeling oxidoreductase-catalyzed reactions.
Bioinformatics. 2013 May 15;29(10):1299-307. doi: 10.1093/bioinformatics/btt140. Epub 2013 Apr 23.
8
Computational modeling of mitochondrial energy transduction.
Crit Rev Biomed Eng. 2011;39(5):363-77. doi: 10.1615/critrevbiomedeng.v39.i5.20.
9
Detailed kinetics and regulation of mammalian 2-oxoglutarate dehydrogenase.
BMC Biochem. 2011 Sep 26;12:53. doi: 10.1186/1471-2091-12-53.

本文引用的文献

1
A database of thermodynamic quantities for the reactions of glycolysis and the tricarboxylic acid cycle.
J Phys Chem B. 2010 Dec 16;114(49):16068-82. doi: 10.1021/jp911381p. Epub 2010 May 6.
2
Generating rate equations for complex enzyme systems by a computer-assisted systematic method.
BMC Bioinformatics. 2009 Aug 4;10:238. doi: 10.1186/1471-2105-10-238.
3
NADH/NAD+ interaction with NADH: ubiquinone oxidoreductase (complex I).
Biochim Biophys Acta. 2008 Jul-Aug;1777(7-8):729-34. doi: 10.1016/j.bbabio.2008.04.014. Epub 2008 Apr 18.
4
Real-time electron transfer in respiratory complex I.
Proc Natl Acad Sci U S A. 2008 Mar 11;105(10):3763-7. doi: 10.1073/pnas.0711249105. Epub 2008 Mar 3.
5
Computer modeling of mitochondrial tricarboxylic acid cycle, oxidative phosphorylation, metabolite transport, and electrophysiology.
J Biol Chem. 2007 Aug 24;282(34):24525-37. doi: 10.1074/jbc.M701024200. Epub 2007 Jun 25.
6
Electron tunneling chains of mitochondria.
Biochim Biophys Acta. 2006 Sep-Oct;1757(9-10):1096-109. doi: 10.1016/j.bbabio.2006.04.015. Epub 2006 May 5.
7
Energy converting NADH:quinone oxidoreductase (complex I).
Annu Rev Biochem. 2006;75:69-92. doi: 10.1146/annurev.biochem.75.103004.142539.
8
The mechanism of superoxide production by NADH:ubiquinone oxidoreductase (complex I) from bovine heart mitochondria.
Proc Natl Acad Sci U S A. 2006 May 16;103(20):7607-12. doi: 10.1073/pnas.0510977103. Epub 2006 May 8.
9
Generation of superoxide by the mitochondrial Complex I.
Biochim Biophys Acta. 2006 May-Jun;1757(5-6):553-61. doi: 10.1016/j.bbabio.2006.03.013. Epub 2006 Apr 17.
10
A biophysical model of the mitochondrial respiratory system and oxidative phosphorylation.
PLoS Comput Biol. 2005 Sep;1(4):e36. doi: 10.1371/journal.pcbi.0010036. Epub 2005 Sep 9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验