Biotechnology and Bioengineering Center and Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.
Biophys J. 2010 Sep 8;99(5):1426-36. doi: 10.1016/j.bpj.2010.06.063.
NADH-ubiquinone oxidoreductase (Complex I, European Commission No. 1.6.5.3) is one of the respiratory complexes that generate the proton-motive force required for the synthesis of ATP in mitochondria. The catalytic mechanism of Complex I has not been well understood, due to the complicated structure of this enzyme. Here, we develop a kinetic model for Complex I that accounts for electron transfer from NADH to ubiquinone through protein-bound prosthetic groups, which is coupled to the translocation of protons across the inner mitochondrial membrane. The model is derived based on the tri-bi enzyme mechanism combined with a simple model of the conformational changes associated with proton transport. To study the catalytic mechanism, parameter values are estimated by analyzing kinetic data. The model is further validated by independent data sets from additional experiments, effectively explaining the effect of pH on enzyme activity. Results imply that matrix pH significantly affects the enzyme turnover processes. The overall kinetic analysis demonstrates a hybrid ping-pong rapid-equilibrium random bi-bi mechanism, consolidating the characteristics from previously reported kinetic mechanisms and data.
烟酰胺腺嘌呤二核苷酸-泛醌氧化还原酶(复合物 I,欧洲委员会编号 1.6.5.3)是一种呼吸复合物,它产生质子动力势,为线粒体中 ATP 的合成提供所需能量。由于该酶的复杂结构,复合物 I 的催化机制尚未得到很好的理解。在这里,我们开发了一种复合物 I 的动力学模型,该模型考虑了通过蛋白结合辅基从 NADH 到泛醌的电子转移,这与质子穿过线粒体内膜的转运相偶联。该模型是基于三酶机制结合与质子传输相关的构象变化的简单模型推导而来的。为了研究催化机制,通过分析动力学数据来估计参数值。该模型进一步通过来自其他实验的独立数据集进行验证,有效地解释了 pH 值对酶活性的影响。结果表明,基质 pH 值显著影响酶的周转过程。整体动力学分析表明,混合乒乓快速平衡随机双酶机制,整合了先前报道的动力学机制和数据的特征。