Department of Biological Sciences, University of Lethbridge, Lethbridge, Alberta, Canada.
Plant Physiol. 2010 Nov;154(3):1415-27. doi: 10.1104/pp.110.162933. Epub 2010 Sep 3.
Plant development consists of the initial phase of intensive cell division followed by continuous genome endoreduplication, cell growth, and elongation. The maintenance of genome stability under these conditions is the main task performed by DNA repair and genome surveillance mechanisms. Our previous work showed that the rate of homologous recombination repair in older plants decreases. We hypothesized that this age-dependent decrease in the recombination rate is paralleled with other changes in DNA repair capacity. Here, we analyzed microsatellite stability using transgenic Arabidopsis (Arabidopsis thaliana) plants that carry the nonfunctional β-glucuronidase gene disrupted by microsatellite repeats. We found that microsatellite instability increased dramatically with plant age. We analyzed the contribution of various mechanisms to microsatellite instability, including replication errors and mistakes of DNA repair mechanisms such as mismatch repair, excision repair, and strand break repair. Analysis of total DNA polymerase activity using partially purified protein extracts showed an age-dependent decrease in activity and an increase in fidelity. Analysis of the steady-state RNA level of DNA replicative polymerases α, δ, Pol I-like A, and Pol I-like B and the expression of mutS homolog 2 (Msh2) and Msh6 showed an age-dependent decrease. An in vitro repair assay showed lower efficiency of nonhomologous end joining in older plants, paralleled by an increase in Ku70 gene expression. Thus, we assume that the more frequent involvement of nonhomologous end joining in strand break repair and the less efficient end-joining repair together with lower levels of mismatch repair activities may be the main contributors to the observed age-dependent increase in microsatellite instability.
植物发育包括初始的密集细胞分裂阶段,随后是持续的基因组内复制、细胞生长和伸长。在这些条件下,维持基因组稳定性是 DNA 修复和基因组监测机制的主要任务。我们之前的工作表明,老年植物中的同源重组修复率降低。我们假设这种重组率随年龄的依赖性降低与 DNA 修复能力的其他变化平行。在这里,我们使用携带非功能性β-葡萄糖醛酸酶基因的转基因拟南芥(Arabidopsis thaliana)植物分析微卫星稳定性,该基因被微卫星重复打断。我们发现微卫星不稳定性随植物年龄的增长而显著增加。我们分析了各种机制对微卫星不稳定性的贡献,包括复制错误和 DNA 修复机制(如错配修复、切除修复和链断裂修复)的错误。使用部分纯化的蛋白提取物分析总 DNA 聚合酶活性显示活性随年龄下降和保真度增加。分析 DNA 复制聚合酶α、δ、Pol I-like A 和 Pol I-like B 的稳态 RNA 水平以及 MutS 同源物 2(Msh2)和 Msh6 的表达显示随年龄下降。体外修复实验表明,非同源末端连接在老年植物中的效率较低,同时 Ku70 基因表达增加。因此,我们假设非同源末端连接在链断裂修复中的更频繁参与以及错配修复活性的效率降低可能是观察到的微卫星不稳定性随年龄增加的主要原因。