Group of Cognitive Systems Modelling, Biophysical Section, Facultad de Ciencias, Universidad de la República, Iguá 4225, Montevideo, 11400, Uruguay.
Bull Math Biol. 2011 Feb;73(2):373-97. doi: 10.1007/s11538-010-9561-0. Epub 2010 Sep 4.
The ability of the human brain to carry out logical reasoning can be interpreted, in general, as a by-product of adaptive capacities of complex neural networks. Thus, we seek to base abstract logical operations in the general properties of neural networks designed as learning modules. We show that logical operations executable by McCulloch-Pitts binary networks can also be programmed in analog neural networks built with associative memory modules that process inputs as logical gates. These modules can interact among themselves to generate dynamical systems that extend the repertoire of logical operations. We demonstrate how the operations of the exclusive-OR or the implication appear as outputs of these interacting modules. In particular, we provide a model of the exclusive-OR that succeeds in evaluating an odd number of options (the exclusive-OR of classical logic fails in his case), thus paving the way for a more reasonable biological model of this important logical operator. We propose that a brain trained to compute can associate a complex logical operation to an orderly structured but temporary contingent episode by establishing a codified association among memory modules. This explanation offers an interpretation of complex logical processes (eventually learned) as associations of contingent events in memorized episodes. We suggest, as an example, a cognitive model that describes these "logical episodes".
人类大脑进行逻辑推理的能力,可以被解释为复杂神经网络适应能力的副产品。因此,我们试图将抽象的逻辑运算建立在作为学习模块设计的神经网络的一般特性上。我们表明,由 McCulloch-Pitts 二值网络执行的逻辑运算,也可以在使用关联记忆模块构建的模拟神经网络中编程,这些模块将输入作为逻辑门进行处理。这些模块可以相互作用,生成扩展逻辑运算范围的动力系统。我们展示了如何将异或或蕴涵操作作为这些相互作用的模块的输出出现。特别是,我们提供了一个异或的模型,成功地评估了奇数个选项(经典逻辑的异或在这种情况下失败了),从而为这个重要逻辑运算符的更合理的生物模型铺平了道路。我们提出,经过训练可以进行计算的大脑可以通过在记忆模块之间建立编码关联,将复杂的逻辑运算与有序结构化但临时的偶然事件联系起来。这种解释将复杂的逻辑过程(最终学习到的)解释为记忆事件中的偶然事件的关联。我们以一个认知模型为例,描述了这些“逻辑事件”。