Instituto de Oceanografia, Universidade Federal do Rio Grande, Av. Itália km 8, 96.201-900 Rio Grande, Rio Grande do Sul, Brazil.
Environ Toxicol Chem. 2010 Aug;29(8):1834-40. doi: 10.1002/etc.212.
Copepods (Acartia tonsa) were exposed (48 h) to waterborne, diet-borne (non-Cu-equilibrated and Cu-equilibrated food), and waterborne plus diet-borne Cu in either the absence or the presence of food (diatom Thalassiosira weissflogii). Toxicity tests were run in different salinities (5, 15, and 30 ppt) together with measurements of physicochemical parameters and total and dissolved Cu concentrations in the experimental media. Results show that most of the toxic Cu fraction was in the dissolved phase. In general, Cu toxicity was higher in low (5 ppt) than in high salinity (30 ppt), regardless of the pathway of Cu exposure tested. In the absence of food, data clearly indicate that differences in waterborne Cu toxicity can be explained by changes in water chemistry. However, addition of food (either non-Cu-equilibrated or Cu-equilibrated) to the experimental media protected against acute Cu toxicity in salinities 5 and 15 ppt, suggesting that A. tonsa requires extra energy to cope with the stressful condition imposed by Cu exposure associated with the ionoregulatory requirements in low salinities. For diet-borne exposure, a very high Cu concentration was necessary to precontaminate the diatoms to a level resulting in copepod mortality. Therefore, availability of food exerted a more important positive impact in protecting against acute Cu toxicity than its potential negative impact via contamination resulting in toxicity. Findings indicate the need for incorporation of both salinity and food in a future biotic ligand model (BLM) version for Cu in estuarine and marine waters. In this context, the euryhaline copepod A. tonsa would be a suitable model species with which to perform experiments to validate and calibrate any future saltwater BLM.
桡足类(Acarteia tonsa)在暴露于水相(经 48 小时)、摄食相(非铜平衡和铜平衡食物)和水相加摄食相铜的情况下(以硅藻 Thalassiosira weissflogii 作为食物),分别在有食物和无食物的情况下受到铜的毒性影响。毒性测试在不同盐度(5、15 和 30 ppt)下进行,同时测量实验介质中的理化参数以及总溶解态铜和溶解态铜浓度。结果表明,大部分有毒铜都处于溶解态。一般而言,无论测试的铜暴露途径如何,低盐度(5 ppt)下的铜毒性都高于高盐度(30 ppt)。在无食物的情况下,数据清楚地表明,水相铜毒性的差异可以用水质变化来解释。然而,向实验介质中添加食物(非铜平衡或铜平衡)可以防止 5 和 15 ppt 盐度下桡足类的急性铜毒性,这表明 A. tonsa 需要额外的能量来应对与低盐度下离子调节需求相关的铜暴露所带来的应激条件。对于摄食相暴露,需要非常高的铜浓度才能预先污染硅藻,导致桡足类死亡。因此,食物的存在对防止急性铜毒性的影响比其通过污染导致毒性的潜在负面影响更为重要。研究结果表明,在未来的河口和海洋水域铜的生物配体模型(BLM)版本中,需要将盐度和食物都考虑进去。在这种情况下,广盐性桡足类 A. tonsa 将是一种合适的模型物种,可以用来进行实验,以验证和校准任何未来的海水 BLM。