Spiliopoulos Leonidas, Hertwig Ralph
Center for Adaptive Rationality, Max Planck Institute for Human Development, Berlin, Germany.
Front Psychol. 2024 Aug 6;15:1438581. doi: 10.3389/fpsyg.2024.1438581. eCollection 2024.
Models of heuristics are often predicated on the desideratum that they should possess no free parameters. As a result, heuristic implementations are usually deterministic and do not allow for any choice errors, as the latter would require a parameter to regulate the magnitude of errors. We discuss the implications of this in light of research that highlights the evidence supporting stochastic choice and its dependence on preferential strength. We argue that, in principle, the existing models of deterministic heuristics should, and can, be quite easily modified to stochastic counterparts through the addition of an error mechanism. This requires a single free parameter in the error mechanism, whilst otherwise retaining the parameter-free cognitive processes in the deterministic component of existing heuristics. We present various types of error mechanisms applicable to heuristics and discuss their comparative virtues and drawbacks, paying particular attention to their impact on model comparisons between heuristics and parameter-rich models.
启发式模型通常基于这样一种需求,即它们不应具有自由参数。因此,启发式实现通常是确定性的,不允许有任何选择错误,因为后者需要一个参数来调节错误的大小。我们根据强调支持随机选择及其对偏好强度依赖性的研究来讨论这一点的含义。我们认为,原则上,现有的确定性启发式模型应该并且能够通过添加一个错误机制相当容易地修改为随机对应模型。这在错误机制中需要一个自由参数,同时在现有启发式的确定性部分中保留无参数的认知过程。我们提出了适用于启发式的各种类型的错误机制,并讨论了它们的相对优点和缺点,特别关注它们对启发式与参数丰富模型之间模型比较的影响。