Suppr超能文献

如何支持多标准决策分析的应用?让我们从一个全面的分类法开始。

How to support the application of multiple criteria decision analysis? Let us start with a comprehensive taxonomy.

作者信息

Cinelli Marco, Kadziński Miłosz, Gonzalez Michael, Słowiński Roman

机构信息

Institute of Computing Science, Poznań University of Technology, Piotrowo 2, 60-965 Poznań, Poland.

Environmental Decision Analytics Branch, Land Remediation and Technology Division, Center for Environmental Solutions and Emergency Response, Office of Research and Development, U.S. Environmental Protection Agency, 26 West Martin Luther King Dr., Cincinnati, 45268, OH, United States.

出版信息

Omega. 2020;96. doi: 10.1016/j.omega.2020.102261.

Abstract

Decision making is a complex task that involves a multitude of perspectives, constraints, and variables. Multiple Criteria Decision Analysis (MCDA) is a process that has been used for several decades to support decision making. It includes a series of steps that systematically help Decision Maker(s) (DM(s)) and stakeholders in structuring a decision making problem, identifying their preferences, and building a decision recommendation consistent with those preferences. Over the last decades, many studies have demonstrated the conduct of the MCDA process and how to select an MCDA method. Until now, there has not been a review of these studies, nor a proposal of a unified and comprehensive high-level representation of the MCDA process characteristics (i.e., features), which is the goal of this paper. We introduce a review of the research that defines how to conduct the MCDA process, compares MCDA methods, and presents Decision Support Systems (DSSs) to recommend a relevant MCDA method or a subset of methods. We then synthesize this research into a taxonomy of characteristics of the MCDA process, grouped into three main phases, (i) problem formulation, (ii) construction of the decision recommendation, and (iii) qualitative features and technical support. Each of these phases includes a subset of the 10 characteristics that helps the analyst implementing the MCDA process, while also being aware of the implication of these choices at each step. By showing how decision making can be split into manageable and justifiable steps, we reduce the risk of overwhelming the analyst, as well as the DMs/stakeholders during the MCDA process. A questioning strategy is also proposed to demonstrate how to apply the taxonomy to map MCDA methods and select the most relevant one(s) using real case studies. Additionally, we show how the DSSs for MCDA method recommendation can be grouped into three main clusters. This proposal can enhance a traceable and categorizable development of such systems.

摘要

决策是一项复杂的任务,涉及众多的观点、限制因素和变量。多准则决策分析(MCDA)是一个已经使用了几十年的支持决策的过程。它包括一系列步骤,系统地帮助决策者(DM)和利益相关者构建决策问题、识别他们的偏好,并建立与这些偏好一致的决策建议。在过去几十年里,许多研究展示了MCDA过程的实施以及如何选择MCDA方法。到目前为止,还没有对这些研究进行综述,也没有提出一个统一、全面的MCDA过程特征(即特性)的高层次表示,而这正是本文的目标。我们对定义如何进行MCDA过程、比较MCDA方法以及介绍决策支持系统(DSS)以推荐相关MCDA方法或方法子集的研究进行综述。然后,我们将这些研究综合成一个MCDA过程特征分类法,分为三个主要阶段:(i)问题表述,(ii)决策建议构建,以及(iii)定性特征和技术支持。这些阶段中的每一个都包括10个特征的一个子集,这些特征有助于分析师实施MCDA过程,同时也让分析师意识到每个步骤中这些选择的含义。通过展示如何将决策分解为可管理和合理的步骤,我们降低了在MCDA过程中使分析师以及决策者/利益相关者不堪重负的风险。还提出了一种提问策略,以展示如何应用该分类法来映射MCDA方法,并使用实际案例研究选择最相关的方法。此外,我们展示了用于MCDA方法推荐的DSS如何可以分为三个主要类别。这一建议可以促进此类系统可追溯和可分类的开发。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8ca6/7970504/c54a5a4c523e/nihms-1673395-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验