Basic Science Program, SAIC-Frederick, Inc., Center for Cancer Research Nanobiology Program, NCI-Frederick, Frederick, MD 21702, USA.
Curr Opin Chem Biol. 2010 Oct;14(5):652-9. doi: 10.1016/j.cbpa.2010.08.012. Epub 2010 Sep 6.
Recent data increasingly reveal that conformational dynamics are indispensable to enzyme function throughout the catalytic cycle, in substrate recruiting, chemical transformation, and product release. Conformational transitions may involve conformational selection and induced fit, which can be viewed as a special case in the catalytic network. NMR, X-ray crystallography, single-molecule FRET, and simulations clearly demonstrate that the free enzyme dynamics already encompass all the conformations necessary for substrate binding, preorganization, transition-state stabilization, and product release. Conformational selection and substate population shift at each step of the catalytic turnover can accommodate enzyme specificity and efficiency. Within such a framework, entropy can have a larger role in conformational dynamics than in direct energy transfer in dynamically promoted catalysis.
最近的数据越来越多地表明,构象动力学在整个催化循环中对于酶的功能是不可或缺的,包括底物的招募、化学转化和产物的释放。构象转变可能涉及构象选择和诱导契合,这可以被视为催化网络中的一个特殊情况。NMR、X 射线晶体学、单分子 FRET 和模拟清楚地表明,游离酶的动力学已经包含了所有与底物结合、预组织、过渡态稳定和产物释放相关的构象。在催化周转的每一步中,构象选择和亚稳态种群的移动都可以适应酶的特异性和效率。在这样的框架内,熵在构象动力学中可以比在动态促进催化中的直接能量转移中发挥更大的作用。