Suppr超能文献

一种快速全自动的基于时间飞跃(TOF)MRA 图像的脑血管分割方法。

A fast and fully automatic method for cerebrovascular segmentation on time-of-flight (TOF) MRA image.

机构信息

Department of Intelligent Image Information, Graduate School of Medicine, Gifu University, Yanagido, Gifu, Japan.

出版信息

J Digit Imaging. 2011 Aug;24(4):609-25. doi: 10.1007/s10278-010-9326-1.

Abstract

The precise three-dimensional (3-D) segmentation of cerebral vessels from magnetic resonance angiography (MRA) images is essential for the detection of cerebrovascular diseases (e.g., occlusion, aneurysm). The complex 3-D structure of cerebral vessels and the low contrast of thin vessels in MRA images make precise segmentation difficult. We present a fast, fully automatic segmentation algorithm based on statistical model analysis and improved curve evolution for extracting the 3-D cerebral vessels from a time-of-flight (TOF) MRA dataset. Cerebral vessels and other tissue (brain tissue, CSF, and bone) in TOF MRA dataset are modeled by Gaussian distribution and combination of Rayleigh with several Gaussian distributions separately. The region distribution combined with gradient information is used in edge-strength of curve evolution as one novel mode. This edge-strength function is able to determine the boundary of thin vessels with low contrast around brain tissue accurately and robustly. Moreover, a fast level set method is developed to implement the curve evolution to assure high efficiency of the cerebrovascular segmentation. Quantitative comparisons with 10 sets of manual segmentation results showed that the average volume sensitivity, the average branch sensitivity, and average mean absolute distance error are 93.6%, 95.98%, and 0.333 mm, respectively. By applying the algorithm to 200 clinical datasets from three hospitals, it is demonstrated that the proposed algorithm can provide good quality segmentation capable of extracting a vessel with a one-voxel diameter in less than 2 min. Its accuracy and speed make this novel algorithm more suitable for a clinical computer-aided diagnosis system.

摘要

从磁共振血管造影(MRA)图像中精确分割脑血管对于检测脑血管疾病(例如闭塞、动脉瘤)至关重要。脑血管的复杂 3D 结构和 MRA 图像中细血管的对比度低使得精确分割变得困难。我们提出了一种快速、全自动的基于统计模型分析和改进曲线演化的分割算法,用于从时飞越磁共振血管造影(TOF MRA)数据集提取三维脑血管。TOF MRA 数据集中的脑血管和其他组织(脑组织、CSF 和骨骼)分别用高斯分布和瑞利分布与几个高斯分布的组合进行建模。区域分布与梯度信息结合作为一种新的模式用于曲线演化的边缘强度。这种边缘强度函数能够准确而稳健地确定脑组织周围低对比度的细血管的边界。此外,开发了一种快速水平集方法来实现曲线演化,以保证脑血管分割的高效率。与 10 组手动分割结果的定量比较表明,平均体积灵敏度、平均分支灵敏度和平均平均绝对距离误差分别为 93.6%、95.98%和 0.333 毫米。通过将该算法应用于来自三家医院的 200 个临床数据集,证明了所提出的算法能够提供高质量的分割结果,能够在不到 2 分钟的时间内提取出一个只有一个像素直径的血管。其准确性和速度使这种新算法更适合临床计算机辅助诊断系统。

相似文献

1
A fast and fully automatic method for cerebrovascular segmentation on time-of-flight (TOF) MRA image.
J Digit Imaging. 2011 Aug;24(4):609-25. doi: 10.1007/s10278-010-9326-1.
2
Automatic cerebrovascular segmentation by accurate probabilistic modeling of TOF-MRA images.
Med Image Comput Comput Assist Interv. 2005;8(Pt 1):34-42. doi: 10.1007/11566465_5.
3
Segmentation of volumetric MRA images by using capillary active contour.
Med Image Anal. 2006 Jun;10(3):317-29. doi: 10.1016/j.media.2005.12.002. Epub 2006 Feb 7.
4
MRA image segmentation with capillary active contour.
Med Image Comput Comput Assist Interv. 2005;8(Pt 1):51-8. doi: 10.1007/11566465_7.
5
A statistical cerebroarterial atlas derived from 700 MRA datasets.
Methods Inf Med. 2013;52(6):467-74. doi: 10.3414/ME13-02-0001. Epub 2013 Nov 5.
7
Segmentation of intracranial vessels and aneurysms in phase contrast magnetic resonance angiography using multirange filters and local variances.
IEEE Trans Image Process. 2013 Mar;22(3):845-59. doi: 10.1109/TIP.2012.2216274. Epub 2012 Aug 30.
8
Threshold segmentation algorithm for automatic extraction of cerebral vessels from brain magnetic resonance angiography images.
J Neurosci Methods. 2015 Feb 15;241:30-6. doi: 10.1016/j.jneumeth.2014.12.003. Epub 2014 Dec 11.
9
3D cerebrovascular segmentation combining fuzzy vessel enhancement and level-sets with anisotropic energy weights.
Magn Reson Imaging. 2013 Feb;31(2):262-71. doi: 10.1016/j.mri.2012.07.008. Epub 2012 Aug 20.
10
Statistical modeling and knowledge-based segmentation of cerebral artery based on TOF-MRA and MR-T1.
Comput Methods Programs Biomed. 2020 Apr;186:105110. doi: 10.1016/j.cmpb.2019.105110. Epub 2019 Nov 14.

引用本文的文献

2
Accurate and robust segmentation of cerebral distal small arteries by DVNet with dual contextual path and vascular attention enhancement.
Quant Imaging Med Surg. 2025 Feb 1;15(2):1468-1479. doi: 10.21037/qims-24-1514. Epub 2025 Jan 21.
3
IGAF: Incremental Guided Attention Fusion for Depth Super-Resolution.
Sensors (Basel). 2024 Dec 24;25(1):24. doi: 10.3390/s25010024.
4
BV-GAN: 3D time-of-flight magnetic resonance angiography cerebrovascular vessel segmentation using adversarial CNNs.
J Med Imaging (Bellingham). 2022 Jul;9(4):044503. doi: 10.1117/1.JMI.9.4.044503. Epub 2022 Aug 31.
5
Automated Segmentation of Trigeminal Nerve and Cerebrovasculature in MR-Angiography Images by Deep Learning.
Front Neurosci. 2021 Dec 10;15:744967. doi: 10.3389/fnins.2021.744967. eCollection 2021.
6
An evaluation of performance measures for arterial brain vessel segmentation.
BMC Med Imaging. 2021 Jul 16;21(1):113. doi: 10.1186/s12880-021-00644-x.
7
Algorithms for segmenting cerebral time-of-flight magnetic resonance angiograms from volunteers and anemic patients.
J Med Imaging (Bellingham). 2021 Mar;8(2):024005. doi: 10.1117/1.JMI.8.2.024005. Epub 2021 Apr 28.
8
Automatic segmentation, feature extraction and comparison of healthy and stroke cerebral vasculature.
Neuroimage Clin. 2021;30:102573. doi: 10.1016/j.nicl.2021.102573. Epub 2021 Jan 26.
10
Robust Segmentation of the Full Cerebral Vasculature in 4D CT of Suspected Stroke Patients.
Sci Rep. 2017 Nov 15;7(1):15622. doi: 10.1038/s41598-017-15617-w.

本文引用的文献

1
A geometric flow for segmenting vasculature in proton-density weighted MRI.
Med Image Anal. 2008 Aug;12(4):497-513. doi: 10.1016/j.media.2008.02.003. Epub 2008 Feb 19.
2
Area and length minimizing flows for shape segmentation.
IEEE Trans Image Process. 1998;7(3):433-43. doi: 10.1109/83.661193.
4
Segmentation of vessel-like patterns using mathematical morphology and curvature evaluation.
IEEE Trans Image Process. 2001;10(7):1010-9. doi: 10.1109/83.931095.
5
Deformable boundary finding in medical images by integrating gradient and region information.
IEEE Trans Med Imaging. 1996;15(6):859-70. doi: 10.1109/42.544503.
6
Adaptive segmentation of MRI data.
IEEE Trans Med Imaging. 1996;15(4):429-42. doi: 10.1109/42.511747.
7
Multiscale active contour model for vessel segmentation.
J Med Eng Technol. 2008 Jan-Feb;32(1):1-9. doi: 10.1080/03091900600700798.
8
A new adaptive probabilistic model of blood vessels for segmenting MRA images.
Med Image Comput Comput Assist Interv. 2006;9(Pt 2):799-806. doi: 10.1007/11866763_98.
9
Automatic cerebrovascular segmentation by accurate probabilistic modeling of TOF-MRA images.
Med Image Comput Comput Assist Interv. 2005;8(Pt 1):34-42. doi: 10.1007/11566465_5.
10
A binary level set model and some applications to Mumford-Shah image segmentation.
IEEE Trans Image Process. 2006 May;15(5):1171-81. doi: 10.1109/tip.2005.863956.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验