Pappada Scott M, Borst Marilyn J, Cameron Brent D, Bourey Raymond E, Lather Jason D, Shipp Desmond, Chiricolo Antonio, Papadimos Thomas J
University of Toledo Medical Center, Toledo, Ohio, USA.
Patient Saf Surg. 2010 Sep 9;4(1):15. doi: 10.1186/1754-9493-4-15.
Development of neural network models for the prediction of glucose levels in critically ill patients through the application of continuous glucose monitoring may provide enhanced patient outcomes. Here we demonstrate the utilization of a predictive model in real-time bedside monitoring. Such modeling may provide intelligent/directed therapy recommendations, guidance, and ultimately automation, in the near future as a means of providing optimal patient safety and care in the provision of insulin drips to prevent hyperglycemia and hypoglycemia.
通过应用连续血糖监测来开发用于预测重症患者血糖水平的神经网络模型,可能会改善患者的预后。在此,我们展示了一种预测模型在实时床边监测中的应用。这种建模在不久的将来可能会提供智能/定向治疗建议、指导,并最终实现自动化,作为在提供胰岛素输注以预防高血糖和低血糖时确保患者最佳安全和护理的一种手段。