Suppr超能文献

用于预测外科重症监护环境中血糖水平的神经网络模型的开发。

Development of a neural network model for predicting glucose levels in a surgical critical care setting.

作者信息

Pappada Scott M, Borst Marilyn J, Cameron Brent D, Bourey Raymond E, Lather Jason D, Shipp Desmond, Chiricolo Antonio, Papadimos Thomas J

机构信息

University of Toledo Medical Center, Toledo, Ohio, USA.

出版信息

Patient Saf Surg. 2010 Sep 9;4(1):15. doi: 10.1186/1754-9493-4-15.

Abstract

Development of neural network models for the prediction of glucose levels in critically ill patients through the application of continuous glucose monitoring may provide enhanced patient outcomes. Here we demonstrate the utilization of a predictive model in real-time bedside monitoring. Such modeling may provide intelligent/directed therapy recommendations, guidance, and ultimately automation, in the near future as a means of providing optimal patient safety and care in the provision of insulin drips to prevent hyperglycemia and hypoglycemia.

摘要

通过应用连续血糖监测来开发用于预测重症患者血糖水平的神经网络模型,可能会改善患者的预后。在此,我们展示了一种预测模型在实时床边监测中的应用。这种建模在不久的将来可能会提供智能/定向治疗建议、指导,并最终实现自动化,作为在提供胰岛素输注以预防高血糖和低血糖时确保患者最佳安全和护理的一种手段。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aee0/2944194/da98f82da2b4/1754-9493-4-15-1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验