Suppr超能文献

基于神经网络的胰岛素依赖型糖尿病患者血糖实时预测。

Neural network-based real-time prediction of glucose in patients with insulin-dependent diabetes.

机构信息

Department of Bioengineering, University of Toledo, Toledo, Ohio 43606-3390, USA.

出版信息

Diabetes Technol Ther. 2011 Feb;13(2):135-41. doi: 10.1089/dia.2010.0104.

Abstract

BACKGROUND

Continuous glucose monitoring (CGM) technologies report measurements of interstitial glucose concentration every 5 min. CGM technologies have the potential to be utilized for prediction of prospective glucose concentrations with subsequent optimization of glycemic control. This article outlines a feed-forward neural network model (NNM) utilized for real-time prediction of glucose.

METHODS

A feed-forward NNM was designed for real-time prediction of glucose in patients with diabetes implementing a prediction horizon of 75 min. Inputs to the NNM included CGM values, insulin dosages, metered glucose values, nutritional intake, lifestyle, and emotional factors. Performance of the NNM was assessed in 10 patients not included in the model training set.

RESULTS

The NNM had a root mean squared error of 43.9 mg/dL and a mean absolute difference percentage of 22.1. The NNM routinely overestimates hypoglycemic extremes, which can be attributed to the limited number of hypoglycemic reactions in the model training set. The model predicts 88.6% of normal glucose concentrations (> 70 and < 180 mg/dL), 72.6% of hyperglycemia (≥ 180 mg/dL), and 2.1% of hypoglycemia (≤ 70 mg/dL). Clarke Error Grid Analysis of model predictions indicated that 92.3% of predictions could be regarded as clinically acceptable and not leading to adverse therapeutic direction. Of these predicted values, 62.3% and 30.0% were located within Zones A and B, respectively, of the error grid.

CONCLUSIONS

Real-time prediction of glucose via the proposed NNM may provide a means of intelligent therapeutic guidance and direction.

摘要

背景

连续血糖监测(CGM)技术每 5 分钟报告一次间质葡萄糖浓度的测量值。CGM 技术有可能用于预测未来的血糖浓度,从而优化血糖控制。本文概述了一种用于实时预测血糖的前馈神经网络模型(NNM)。

方法

设计了一种用于实时预测糖尿病患者血糖的前馈 NNM,预测时间为 75 分钟。NNM 的输入包括 CGM 值、胰岛素剂量、计量血糖值、营养摄入、生活方式和情绪因素。在未纳入模型训练集的 10 名患者中评估 NNM 的性能。

结果

NNM 的均方根误差为 43.9mg/dL,平均绝对差异百分比为 22.1。NNM 通常会高估低血糖极端值,这可归因于模型训练集中低血糖反应的数量有限。该模型预测 88.6%的正常血糖浓度(>70 和<180mg/dL)、72.6%的高血糖(≥180mg/dL)和 2.1%的低血糖(≤70mg/dL)。模型预测值的 Clarke 误差网格分析表明,92.3%的预测值可视为临床可接受值,不会导致治疗方向不当。在这些预测值中,62.3%和 30.0%分别位于误差网格的 A 区和 B 区。

结论

通过所提出的 NNM 实时预测血糖可能提供一种智能治疗指导和方向的方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验