Department of Computer Science & Engineering, University of South Carolina, 315 Main Street, Columbia, SC 29208, United States.
J Magn Reson. 2010 Nov;207(1):8-16. doi: 10.1016/j.jmr.2010.07.016. Epub 2010 Jul 30.
A strategy for simultaneous study of the structure and internal dynamics of a membrane protein is described using the REDCRAFT algorithm. The membrane-bound form of the Pf1 major coat protein (mbPf1) was used as an example. First, synthetic data is utilized to validate the simultaneous study of structure and dynamics with REDCRAFT using dihedral restraints and backbone N-H RDCs from two different alignments. Subsequently, the validated analysis is applied to experimental data and confirms that REDCRAFT produces meaningful structures from sparse RDC data. Furthermore, simulated data from a two-state jump motion is used to illustrate the necessity for simultaneous consideration of structure and dynamics. Disregarding internal dynamics during the course of structure determination is shown to produce an average-state that is not related to the two intermediate states. During the analysis of RDC data from the dynamic model, REDCRAFT appropriately identifies the region separating the static and dynamic domains of the protein. Finally, analysis of experimental data strongly suggests the existence of internal motion between the amphipathic and the transmembrane helices of the membrane-bound form of the protein. The ability to perform fragmented structure determination of each domain without a priori assumption of the order tensors allows an independent determination of the order tensors, which yields a more comprehensive description of protein structure and dynamics and is particularly relevant to the study of membrane proteins.
一种用于同时研究膜蛋白结构和内部动力学的策略,使用 REDCRAFT 算法进行描述。以 Pf1 主要外壳蛋白(mbPf1)的膜结合形式为例。首先,使用合成数据验证使用二面角约束和来自两个不同比对的骨架 N-H RDC 对 REDCRAFT 进行结构和动力学同时研究的有效性。随后,将经过验证的分析应用于实验数据,证实 REDCRAFT 可从稀疏的 RDC 数据中生成有意义的结构。此外,使用来自两态跳跃运动的模拟数据来说明同时考虑结构和动力学的必要性。在确定结构的过程中忽略内部动力学,会导致生成与两个中间状态无关的平均状态。在对动态模型的 RDC 数据分析过程中,REDCRAFT 适当地识别出将蛋白质的静态和动态区域分隔开的区域。最后,对实验数据的分析强烈表明,在蛋白的膜结合形式中,亲水区和跨膜螺旋之间存在内部运动。能够在没有先验假设的情况下对每个结构域进行碎片化结构确定的能力允许对顺序张量进行独立确定,从而对蛋白质结构和动力学进行更全面的描述,这对于膜蛋白的研究特别相关。