Suppr超能文献

用核磁共振波谱学测定膜蛋白结构。

Structure determination of membrane proteins by nuclear magnetic resonance spectroscopy.

机构信息

Department of Chemistry and Biochemistry, University of California, San Diego 92093, USA.

出版信息

Annu Rev Anal Chem (Palo Alto Calif). 2013;6:305-28. doi: 10.1146/annurev-anchem-062012-092631. Epub 2013 Apr 1.

Abstract

Many biological membranes consist of 50% or more (by weight) membrane proteins, which constitute approximately one-third of all proteins expressed in biological organisms. Helical membrane proteins function as receptors, enzymes, and transporters, among other unique cellular roles. Additionally, most drugs have membrane proteins as their receptors, notably the superfamily of G protein-coupled receptors with seven transmembrane helices. Determining the structures of membrane proteins is a daunting task because of the effects of the membrane environment; specifically, it has been difficult to combine biologically compatible environments with the requirements for the established methods of structure determination. There is strong motivation to determine the structures in their native phospholipid bilayer environment so that perturbations from nonnatural lipids and phases do not have to be taken into account. At present, the only method that can work with proteins in liquid crystalline phospholipid bilayers is solid-state NMR spectroscopy.

摘要

许多生物膜由 50%或更多(按重量计)的膜蛋白组成,这些膜蛋白约占生物体内表达的所有蛋白质的三分之一。螺旋膜蛋白具有受体、酶和转运蛋白等独特的细胞功能。此外,大多数药物的受体都是膜蛋白,特别是具有七个跨膜螺旋的 G 蛋白偶联受体超家族。由于膜环境的影响,确定膜蛋白的结构是一项艰巨的任务;具体来说,很难将生物相容的环境与既定结构确定方法的要求结合起来。强烈希望在其天然磷脂双层环境中确定结构,以便不必考虑来自非天然脂质和相的干扰。目前,唯一可以在液晶磷脂双层中处理蛋白质的方法是固态 NMR 光谱学。

相似文献

1
Structure determination of membrane proteins by nuclear magnetic resonance spectroscopy.
Annu Rev Anal Chem (Palo Alto Calif). 2013;6:305-28. doi: 10.1146/annurev-anchem-062012-092631. Epub 2013 Apr 1.
3
Structure determination of membrane proteins in five easy pieces.
Methods. 2011 Dec;55(4):363-9. doi: 10.1016/j.ymeth.2011.09.009. Epub 2011 Sep 20.
4
NMR of membrane proteins in micelles and bilayers: the FXYD family proteins.
Methods. 2007 Apr;41(4):398-408. doi: 10.1016/j.ymeth.2006.08.011.
6
Solid-state NMR and membrane proteins.
J Magn Reson. 2015 Apr;253:129-37. doi: 10.1016/j.jmr.2014.11.015. Epub 2014 Dec 29.
7
Lipid bilayers: an essential environment for the understanding of membrane proteins.
Magn Reson Chem. 2007 Dec;45 Suppl 1:S2-11. doi: 10.1002/mrc.2077. Epub 2007 Dec 19.
9
Membrane proteins in their native habitat as seen by solid-state NMR spectroscopy.
Protein Sci. 2015 Sep;24(9):1333-46. doi: 10.1002/pro.2700. Epub 2015 May 27.
10
Nuclear magnetic resonance structural studies of membrane proteins in micelles and bilayers.
Methods Mol Biol. 2007;400:515-29. doi: 10.1007/978-1-59745-519-0_35.

引用本文的文献

2
Recent Advances in Detergent Chemistry and Handling Support Membrane Protein Analysis Including Lipid Interactions.
Chemistry. 2025 Sep 1;31(49):e202501549. doi: 10.1002/chem.202501549. Epub 2025 May 30.
3
Regulatory Guidelines for the Analysis of Therapeutic Peptides and Proteins.
J Pept Sci. 2025 Mar;31(3):e70001. doi: 10.1002/psc.70001.
4
Identifying potential drug-target interactions based on ensemble deep learning.
Front Aging Neurosci. 2023 Jun 15;15:1176400. doi: 10.3389/fnagi.2023.1176400. eCollection 2023.
6
Chemogenomic Approaches for Revealing Drug Target Interactions in Drug Discovery.
Curr Genomics. 2021 Dec 30;22(5):328-338. doi: 10.2174/1389202922666210920125800.
7
Spectroscopic signatures of bilayer ordering in native biological membranes.
Biochim Biophys Acta Biomembr. 2022 Jun 1;1864(6):183891. doi: 10.1016/j.bbamem.2022.183891. Epub 2022 Feb 22.
8
Current Approaches in Supersecondary Structures Investigation.
Int J Mol Sci. 2021 Nov 2;22(21):11879. doi: 10.3390/ijms222111879.
9
AutoDTI++: deep unsupervised learning for DTI prediction by autoencoders.
BMC Bioinformatics. 2021 Apr 20;22(1):204. doi: 10.1186/s12859-021-04127-2.
10

本文引用的文献

1
Influences of membrane mimetic environments on membrane protein structures.
Annu Rev Biophys. 2013;42:361-92. doi: 10.1146/annurev-biophys-083012-130326. Epub 2013 Mar 1.
2
Structure of the chemokine receptor CXCR1 in phospholipid bilayers.
Nature. 2012 Nov 29;491(7426):779-83. doi: 10.1038/nature11580. Epub 2012 Oct 21.
3
The early evolution of lipid membranes and the three domains of life.
Nat Rev Microbiol. 2012 Jun 11;10(7):507-15. doi: 10.1038/nrmicro2815.
5
Efficiency of detergents at maintaining membrane protein structures in their biologically relevant forms.
Biochim Biophys Acta. 2012 May;1818(5):1351-8. doi: 10.1016/j.bbamem.2012.01.013. Epub 2012 Jan 21.
6
Structure determination of a membrane protein in proteoliposomes.
J Am Chem Soc. 2012 Feb 1;134(4):2047-56. doi: 10.1021/ja209464f. Epub 2012 Jan 23.
7
First solution structures of seven-transmembrane helical proteins.
Angew Chem Int Ed Engl. 2012 Jan 23;51(4):860-1. doi: 10.1002/anie.201107639. Epub 2011 Dec 16.
9
Solution NMR structure of proteorhodopsin.
Angew Chem Int Ed Engl. 2011 Dec 9;50(50):11942-6. doi: 10.1002/anie.201105648. Epub 2011 Oct 27.
10
Diversity and modularity of G protein-coupled receptor structures.
Trends Pharmacol Sci. 2012 Jan;33(1):17-27. doi: 10.1016/j.tips.2011.09.003. Epub 2011 Oct 25.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验