Suppr超能文献

膜结合形式的 Pf1 衣壳蛋白的结构与动力学:结构重排对病毒组装的影响。

Structure and dynamics of the membrane-bound form of Pf1 coat protein: implications of structural rearrangement for virus assembly.

机构信息

Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California, USA.

出版信息

Biophys J. 2010 Sep 8;99(5):1465-74. doi: 10.1016/j.bpj.2010.06.009.

Abstract

The three-dimensional structure of the membrane-bound form of the major coat protein of Pf1 bacteriophage was determined in phospholipid bilayers using orientation restraints derived from both solid-state and solution NMR experiments. In contrast to previous structures determined solely in detergent micelles, the structure in bilayers contains information about the spatial arrangement of the protein within the membrane, and thus provides insights to the bacteriophage assembly process from membrane-inserted to bacteriophage-associated protein. Comparisons between the membrane-bound form of the coat protein and the previously determined structural form found in filamentous bacteriophage particles demonstrate that it undergoes a significant structural rearrangement during the membrane-mediated virus assembly process. The rotation of the transmembrane helix (Q16-A46) around its long axis changes dramatically (by 160 degrees) to obtain the proper alignment for packing in the virus particles. Furthermore, the N-terminal amphipathic helix (V2-G17) tilts away from the membrane surface and becomes parallel with the transmembrane helix to form one nearly continuous long helix. The spectra obtained in glass-aligned planar lipid bilayers, magnetically aligned lipid bilayers (bicelles), and isotropic lipid bicelles reflect the effects of backbone motions and enable the backbone dynamics of the N-terminal helix to be characterized. Only resonances from the mobile N-terminal helix and the C-terminus (A46) are observed in the solution NMR spectra of the protein in isotropic q > 1 bicelles, whereas only resonances from the immobile transmembrane helix are observed in the solid-state (1)H/(15)N-separated local field spectra in magnetically aligned bicelles. The N-terminal helix and the hinge that connects it to the transmembrane helix are significantly more dynamic than the rest of the protein, thus facilitating structural rearrangement during bacteriophage assembly.

摘要

Pf1 噬菌体主要外壳蛋白的膜结合形式的三维结构是在磷脂双层中使用源自固态和溶液 NMR 实验的取向约束来确定的。与以前仅在去污剂胶束中确定的结构相比,双层中的结构包含了蛋白质在膜内的空间排列信息,从而为从插入膜的噬菌体组装过程到噬菌体相关蛋白提供了深入的了解。膜结合形式的外壳蛋白与先前在丝状噬菌体颗粒中确定的结构形式之间的比较表明,它在膜介导的病毒组装过程中经历了显著的结构重排。跨膜螺旋(Q16-A46)绕其长轴的旋转变化很大(160 度),以获得在病毒颗粒中包装的正确排列。此外,N 端两亲性螺旋(V2-G17)远离膜表面倾斜,并与跨膜螺旋平行,形成一个几乎连续的长螺旋。在玻璃定向平面脂质双层、磁定向脂质双层(双胶束)和各向同性脂质双胶束中获得的光谱反映了骨架运动的影响,并使 N 端螺旋的骨架动力学能够得到表征。只有在各向同性 q > 1 双胶束中蛋白质的溶液 NMR 光谱中才能观察到移动的 N 端螺旋和 C 端(A46)的共振,而在磁定向双胶束中固态(1)H/(15)N 分离局部场光谱中只能观察到不移动的跨膜螺旋的共振。N 端螺旋和连接它到跨膜螺旋的铰链比蛋白质的其余部分更具动态性,从而促进了噬菌体组装过程中的结构重排。

相似文献

2
NMR studies of the structure and dynamics of membrane-bound bacteriophage Pf1 coat protein.
Science. 1991 May 31;252(5010):1303-5. doi: 10.1126/science.1925542.
3
Three-dimensional structure of the transmembrane domain of Vpu from HIV-1 in aligned phospholipid bicelles.
Biophys J. 2006 Oct 15;91(8):3032-42. doi: 10.1529/biophysj.106.087106. Epub 2006 Jul 21.
4
Structure of the coat protein in Pf1 bacteriophage determined by solid-state NMR spectroscopy.
J Mol Biol. 2004 Aug 13;341(3):869-79. doi: 10.1016/j.jmb.2004.06.038.
5
fd coat protein structure in membrane environments.
J Mol Biol. 1993 Oct 5;233(3):447-63. doi: 10.1006/jmbi.1993.1523.
7
Orientational and motional narrowing of solid-state NMR lineshapes of uniaxially aligned membrane proteins.
J Phys Chem B. 2011 Dec 29;115(51):15406-14. doi: 10.1021/jp2092847. Epub 2011 Dec 1.
8
Structure of the coat protein in fd filamentous bacteriophage particles determined by solid-state NMR spectroscopy.
Proc Natl Acad Sci U S A. 2003 May 27;100(11):6458-63. doi: 10.1073/pnas.1132059100. Epub 2003 May 15.

引用本文的文献

1
Nuclear Magnetic Resonance Spectroscopy to Study Virus Structure.
Subcell Biochem. 2024;105:171-206. doi: 10.1007/978-3-031-65187-8_5.
2
Peptoid-based macrodiscs of variable lipid composition for structural studies of membrane proteins by oriented-sample solid-state NMR.
J Struct Biol X. 2023 Dec 8;9:100095. doi: 10.1016/j.yjsbx.2023.100095. eCollection 2024 Jun.
3
Aligned peptoid-based macrodiscs for structural studies of membrane proteins by oriented-sample NMR.
Biophys J. 2022 Sep 6;121(17):3263-3270. doi: 10.1016/j.bpj.2022.07.024. Epub 2022 Aug 2.
4
Bacteriophage and Bacterial Susceptibility, Resistance, and Tolerance to Antibiotics.
Pharmaceutics. 2022 Jul 7;14(7):1425. doi: 10.3390/pharmaceutics14071425.
5
3D printed sample tubes for solid-state NMR experiments.
J Magn Reson. 2021 Jun;327:106957. doi: 10.1016/j.jmr.2021.106957. Epub 2021 Mar 17.
6
REDCRAFT: A computational platform using residual dipolar coupling NMR data for determining structures of perdeuterated proteins in solution.
PLoS Comput Biol. 2021 Feb 1;17(2):e1008060. doi: 10.1371/journal.pcbi.1008060. eCollection 2021 Feb.
7
Membrane proteins in magnetically aligned phospholipid polymer discs for solid-state NMR spectroscopy.
Biochim Biophys Acta Biomembr. 2020 Sep 1;1862(9):183333. doi: 10.1016/j.bbamem.2020.183333. Epub 2020 May 1.
8
Pf Bacteriophage and Their Impact on Pseudomonas Virulence, Mammalian Immunity, and Chronic Infections.
Front Immunol. 2020 Feb 21;11:244. doi: 10.3389/fimmu.2020.00244. eCollection 2020.
9
Effects of deuteration on solid-state NMR spectra of single peptide crystals and oriented protein samples.
J Magn Reson. 2019 Dec;309:106613. doi: 10.1016/j.jmr.2019.106613. Epub 2019 Sep 24.
10
Solution NMR: A powerful tool for structural and functional studies of membrane proteins in reconstituted environments.
J Biol Chem. 2019 Nov 1;294(44):15914-15931. doi: 10.1074/jbc.REV119.009178. Epub 2019 Sep 24.

本文引用的文献

2
Viruses: incredible nanomachines. New advances with filamentous phages.
Eur Biophys J. 2010 Mar;39(4):541-50. doi: 10.1007/s00249-009-0523-0. Epub 2009 Aug 13.
3
Efficient and accurate estimation of relative order tensors from lambda-maps.
J Magn Reson. 2009 Jun;198(2):236-47. doi: 10.1016/j.jmr.2009.02.014. Epub 2009 Mar 5.
5
Structure, dynamics, and assembly of filamentous bacteriophages by nuclear magnetic resonance spectroscopy.
Annu Rev Phys Chem. 2008;59:635-57. doi: 10.1146/annurev.physchem.58.032806.104640.
6
Lipid bilayers: an essential environment for the understanding of membrane proteins.
Magn Reson Chem. 2007 Dec;45 Suppl 1:S2-11. doi: 10.1002/mrc.2077. Epub 2007 Dec 19.
7
Structural similarity of a membrane protein in micelles and membranes.
J Am Chem Soc. 2007 Jul 4;129(26):8078-9. doi: 10.1021/ja0728371. Epub 2007 Jun 13.
9
Three-dimensional experiment for solid-state NMR of aligned protein samples in high field magnets.
J Biomol NMR. 2007 Feb;37(2):113-6. doi: 10.1007/s10858-006-9121-y. Epub 2007 Jan 10.
10
Assigning solid-state NMR spectra of aligned proteins using isotropic chemical shifts.
J Magn Reson. 2006 Dec;183(2):329-32. doi: 10.1016/j.jmr.2006.08.016. Epub 2006 Sep 25.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验