Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California, USA.
Biophys J. 2010 Sep 8;99(5):1465-74. doi: 10.1016/j.bpj.2010.06.009.
The three-dimensional structure of the membrane-bound form of the major coat protein of Pf1 bacteriophage was determined in phospholipid bilayers using orientation restraints derived from both solid-state and solution NMR experiments. In contrast to previous structures determined solely in detergent micelles, the structure in bilayers contains information about the spatial arrangement of the protein within the membrane, and thus provides insights to the bacteriophage assembly process from membrane-inserted to bacteriophage-associated protein. Comparisons between the membrane-bound form of the coat protein and the previously determined structural form found in filamentous bacteriophage particles demonstrate that it undergoes a significant structural rearrangement during the membrane-mediated virus assembly process. The rotation of the transmembrane helix (Q16-A46) around its long axis changes dramatically (by 160 degrees) to obtain the proper alignment for packing in the virus particles. Furthermore, the N-terminal amphipathic helix (V2-G17) tilts away from the membrane surface and becomes parallel with the transmembrane helix to form one nearly continuous long helix. The spectra obtained in glass-aligned planar lipid bilayers, magnetically aligned lipid bilayers (bicelles), and isotropic lipid bicelles reflect the effects of backbone motions and enable the backbone dynamics of the N-terminal helix to be characterized. Only resonances from the mobile N-terminal helix and the C-terminus (A46) are observed in the solution NMR spectra of the protein in isotropic q > 1 bicelles, whereas only resonances from the immobile transmembrane helix are observed in the solid-state (1)H/(15)N-separated local field spectra in magnetically aligned bicelles. The N-terminal helix and the hinge that connects it to the transmembrane helix are significantly more dynamic than the rest of the protein, thus facilitating structural rearrangement during bacteriophage assembly.
Pf1 噬菌体主要外壳蛋白的膜结合形式的三维结构是在磷脂双层中使用源自固态和溶液 NMR 实验的取向约束来确定的。与以前仅在去污剂胶束中确定的结构相比,双层中的结构包含了蛋白质在膜内的空间排列信息,从而为从插入膜的噬菌体组装过程到噬菌体相关蛋白提供了深入的了解。膜结合形式的外壳蛋白与先前在丝状噬菌体颗粒中确定的结构形式之间的比较表明,它在膜介导的病毒组装过程中经历了显著的结构重排。跨膜螺旋(Q16-A46)绕其长轴的旋转变化很大(160 度),以获得在病毒颗粒中包装的正确排列。此外,N 端两亲性螺旋(V2-G17)远离膜表面倾斜,并与跨膜螺旋平行,形成一个几乎连续的长螺旋。在玻璃定向平面脂质双层、磁定向脂质双层(双胶束)和各向同性脂质双胶束中获得的光谱反映了骨架运动的影响,并使 N 端螺旋的骨架动力学能够得到表征。只有在各向同性 q > 1 双胶束中蛋白质的溶液 NMR 光谱中才能观察到移动的 N 端螺旋和 C 端(A46)的共振,而在磁定向双胶束中固态(1)H/(15)N 分离局部场光谱中只能观察到不移动的跨膜螺旋的共振。N 端螺旋和连接它到跨膜螺旋的铰链比蛋白质的其余部分更具动态性,从而促进了噬菌体组装过程中的结构重排。