Cancer Research UK, London Research Institute, 44 Lincoln's Inn Fields, London WC2A 3PX, UK.
Nature. 2010 Sep 9;467(7312):223-7. doi: 10.1038/nature09374.
The notion that telomeres are essential for chromosome linearity stems from the existence of two chief dangers: inappropriate DNA damage response (DDR) reactions that mistake natural chromosome ends for double-strand DNA breaks (DSBs), and the progressive loss of DNA from chromosomal termini due to the end replication problem. Telomeres avert the former peril by binding sequence-specific end-protection factors that control the access of DDR activities. The latter threat is tackled by recruiting telomerase, a reverse transcriptase that uses an integral RNA subunit to template the addition of telomere repeats to chromosome ends. Here we describe an alternative mode of linear chromosome maintenance in which canonical telomeres are superseded by blocks of heterochromatin. We show that in the absence of telomerase, Schizosaccharomyces pombe cells can survive telomere sequence loss by continually amplifying and rearranging heterochromatic sequences. Because the heterochromatin assembly machinery is required for this survival mode, we have termed it 'HAATI' (heterochromatin amplification-mediated and telomerase-independent). HAATI uses the canonical end-protection protein Pot1 (ref. 4) and its interacting partner Ccq1 (ref. 5) to preserve chromosome linearity. The data suggest a model in which Ccq1 is recruited by the amplified heterochromatin and provides an anchor for Pot1, which accomplishes its end-protection function in the absence of its cognate DNA-binding sequence. HAATI resembles the chromosome end-maintenance strategy found in Drosophila melanogaster, which lacks specific telomere sequences but nonetheless assembles terminal heterochromatin structures that recruit end-protection factors. These findings reveal a previously unrecognized mode by which cancer cells might escape the requirement for telomerase activation, and offer a tool for studying genomes that sustain unusually high levels of heterochromatinization.
错误地将自然染色体末端识别为双链 DNA 断裂 (DSB) 的不适当的 DNA 损伤反应 (DDR) 反应,以及由于末端复制问题导致染色体末端 DNA 的逐渐丢失。端粒通过结合序列特异性末端保护因子来避免前者的危险,这些因子控制 DDR 活性的进入。后者的威胁通过招募端粒酶来解决,端粒酶是一种逆转录酶,它使用一个完整的 RNA 亚基来模板化在染色体末端添加端粒重复序列。在这里,我们描述了一种替代的线性染色体维持模式,其中规范的端粒被异染色质块取代。我们表明,在没有端粒酶的情况下,裂殖酵母细胞可以通过不断扩增和重排异染色质序列来存活端粒序列丢失。由于异染色质组装机制是这种存活模式所必需的,因此我们将其称为“HAATI”(异染色质扩增介导和端粒酶独立)。HAATI 使用规范的末端保护蛋白 Pot1(参考文献 4)及其相互作用伙伴 Ccq1(参考文献 5)来维持染色体线性。这些数据表明了一个模型,其中 Ccq1 被扩增的异染色质募集,并为 Pot1 提供一个锚点,Pot1 在没有其同源 DNA 结合序列的情况下完成其末端保护功能。HAATI 类似于在缺乏特定端粒序列的黑腹果蝇中发现的染色体末端维持策略,但仍组装募集末端保护因子的末端异染色质结构。这些发现揭示了一种以前未被认识到的癌细胞可能逃避端粒酶激活要求的模式,并为研究维持异常高水平异染色质化的基因组提供了一种工具。