Suppr超能文献

联合肽强度和肽出现的统计分析可提高基于 MS 的蛋白质组学数据中显著肽的鉴定。

Combined statistical analyses of peptide intensities and peptide occurrences improves identification of significant peptides from MS-based proteomics data.

机构信息

Pacific Northwest National Laboratory, Richland, WA 99352, USA.

出版信息

J Proteome Res. 2010 Nov 5;9(11):5748-56. doi: 10.1021/pr1005247. Epub 2010 Oct 8.

Abstract

Liquid chromatography-mass spectrometry-based (LC-MS) proteomics uses peak intensities of proteolytic peptides to infer the differential abundance of peptides/proteins. However, substantial run-to-run variability in intensities and observations (presence/absence) of peptides makes data analysis quite challenging. The missing observations in LC-MS proteomics data are difficult to address with traditional imputation-based approaches because the mechanisms by which data are missing are unknown a priori. Data can be missing due to random mechanisms such as experimental error or nonrandom mechanisms such as a true biological effect. We present a statistical approach that uses a test of independence known as a G-test to test the null hypothesis of independence between the number of missing values across experimental groups. We pair the G-test results, evaluating independence of missing data (IMD) with an analysis of variance (ANOVA) that uses only means and variances computed from the observed data. Each peptide is therefore represented by two statistical confidence metrics, one for qualitative differential observation and one for quantitative differential intensity. We use three LC-MS data sets to demonstrate the robustness and sensitivity of the IMD-ANOVA approach.

摘要

基于液相色谱-质谱法(LC-MS)的蛋白质组学使用酶解肽的峰强度来推断肽/蛋白质的差异丰度。然而,强度和肽的存在/缺失的大量运行间变异性使得数据分析极具挑战性。LC-MS 蛋白质组学数据中的缺失观察值难以用传统的基于插补的方法解决,因为数据缺失的机制是事先未知的。数据可能由于随机机制(例如实验误差)或非随机机制(例如真实的生物学效应)而缺失。我们提出了一种统计方法,该方法使用称为 G 检验的独立性检验来检验实验组之间缺失值数量的独立性零假设。我们将 G 检验结果与仅使用从观察数据计算的均值和方差进行的方差分析(ANOVA)相结合,评估缺失数据的独立性(IMD)。因此,每个肽都由两个统计置信度指标表示,一个用于定性差异观察,一个用于定量差异强度。我们使用三个 LC-MS 数据集来证明 IMD-ANOVA 方法的稳健性和敏感性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验