Suppr超能文献

一种用于改进微生物感染早期检测的高通量蛋白质组学和代谢组学数据的贝叶斯整合模型。

A Bayesian integration model of high-throughput proteomics and metabolomics data for improved early detection of microbial infections.

作者信息

Webb-Robertson Bobbie-Jo M, McCue Lee Ann, Beagley Nathanial, McDermott Jason E, Wunschel David S, Varnum Susan M, Hu Jian Zhi, Isern Nancy G, Buchko Garry W, Mcateer Kathleen, Pounds Joel G, Skerrett Shawn J, Liggitt Denny, Frevert Charles W

机构信息

Pacific Northwest National Laboratory, Richland, WA 99352, USA.

出版信息

Pac Symp Biocomput. 2009:451-63.

Abstract

High-throughput (HTP) technologies offer the capability to evaluate the genome, proteome, and metabolome of an organism at a global scale. This opens up new opportunities to define complex signatures of disease that involve signals from multiple types of biomolecules. However, integrating these data types is difficult due to the heterogeneity of the data. We present a Bayesian approach to integration that uses posterior probabilities to assign class memberships to samples using individual and multiple data sources; these probabilities are based on lower-level likelihood functions derived from standard statistical learning algorithms. We demonstrate this approach on microbial infections of mice, where the bronchial alveolar lavage fluid was analyzed by three HTP technologies, two proteomic and one metabolomic. We demonstrate that integration of the three datasets improves classification accuracy to approximately 89% from the best individual dataset at approximately 83%. In addition, we present a new visualization tool called Visual Integration for Bayesian Evaluation (VIBE) that allows the user to observe classification accuracies at the class level and evaluate classification accuracies on any subset of available data types based on the posterior probability models defined for the individual and integrated data.

摘要

高通量(HTP)技术能够在全球范围内评估生物体的基因组、蛋白质组和代谢组。这为定义涉及多种生物分子信号的复杂疾病特征开辟了新机会。然而,由于数据的异质性,整合这些数据类型具有难度。我们提出一种贝叶斯整合方法,该方法使用后验概率,通过单个和多个数据源为样本分配类别成员身份;这些概率基于从标准统计学习算法得出的较低层次似然函数。我们在小鼠的微生物感染实验中展示了这种方法,其中通过三种HTP技术对支气管肺泡灌洗液进行分析,两种蛋白质组学技术和一种代谢组学技术。我们证明,将三个数据集整合后,分类准确率从最佳单个数据集的约83%提高到了约89%。此外,我们还展示了一种名为贝叶斯评估可视化整合(VIBE)的新可视化工具,该工具允许用户在类别层面观察分类准确率,并根据为单个和整合数据定义的后验概率模型,评估可用数据类型的任何子集上的分类准确率。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ff42/4137860/3057c7ead23b/nihms610545f1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验