Suppr超能文献

花部遗传结构:跨环境下花部(协同)变异的 QTL 结构分析。

Floral genetic architecture: an examination of QTL architecture underlying floral (co)variation across environments.

机构信息

Department of Botany, University of Wyoming, Laramie, WY 82071, USA.

出版信息

Genetics. 2010 Dec;186(4):1451-65. doi: 10.1534/genetics.110.119982. Epub 2010 Sep 13.

Abstract

Genetic correlations are expected to be high among functionally related traits and lower between groups of traits with distinct functions (e.g., reproductive vs. resource-acquisition traits). Here, we explore the quantitative-genetic and QTL architecture of floral organ sizes, vegetative traits, and life history in a set of Brassica rapa recombinant inbred lines within and across field and greenhouse environments. Floral organ lengths were strongly positively correlated within both environments, and analysis of standardized G-matrices indicates that the structure of genetic correlations is ∼80% conserved across environments. Consistent with these correlations, we detected a total of 19 and 21 additive-effect floral QTL in the field and the greenhouse, respectively, and individual QTL typically affected multiple organ types. Interestingly, QTL×QTL epistasis also appeared to contribute to observed genetic correlations; i.e., interactions between two QTL had similar effects on filament length and two estimates of petal size. Although floral and nonfloral traits are hypothesized to be genetically decoupled, correlations between floral organ size and both vegetative and life-history traits were highly significant in the greenhouse; G-matrices of floral and vegetative traits as well as floral and life-history traits differed across environments. Correspondingly, many QTL (45% of those mapped in the greenhouse) showed environmental interactions, including approximately even numbers of floral and nonfloral QTL. Most instances of QTL×QTL epistasis for floral traits were environment dependent.

摘要

遗传相关预计在功能相关的性状之间较高,而在具有不同功能的性状群之间较低(例如,生殖与资源获取性状)。在这里,我们在 Brassica rapa 重组自交系的一组内和跨田间和温室环境中探索了花器官大小、营养性状和生活史的数量遗传和 QTL 结构。花器官长度在两种环境中均呈强烈正相关,标准化 G 矩阵分析表明遗传相关结构在环境间约有 80%的保守性。与这些相关性一致,我们分别在田间和温室中检测到总计 19 和 21 个加性效应花 QTL,单个 QTL 通常影响多种器官类型。有趣的是,QTL×QTL 上位性似乎也有助于观察到的遗传相关性;即,两个 QTL 之间的相互作用对丝状长度和两个花瓣大小的估计具有相似的影响。尽管花和非花性状被假设为遗传上分离的,但在温室中,花器官大小与营养和生活史性状之间的相关性高度显著;花和营养性状以及花和生活史性状的 G 矩阵在环境间存在差异。相应地,许多 QTL(温室中映射的 QTL 的 45%)表现出环境相互作用,包括数量相当的花和非花 QTL。大多数花性状的 QTL×QTL 上位性实例是环境依赖的。

相似文献

1
Floral genetic architecture: an examination of QTL architecture underlying floral (co)variation across environments.
Genetics. 2010 Dec;186(4):1451-65. doi: 10.1534/genetics.110.119982. Epub 2010 Sep 13.
2
Plasticity and environment-specific covariances: an investigation of floral-vegetative and within flower correlations.
Evolution. 2007 Dec;61(12):2913-24. doi: 10.1111/j.1558-5646.2007.00240.x. Epub 2007 Oct 15.
7
QTL architecture of reproductive fitness characters in Brassica rapa.
BMC Plant Biol. 2014 Mar 18;14:66. doi: 10.1186/1471-2229-14-66.
8
QTL analysis of floral traits in Louisiana iris hybrids.
Evolution. 2007 Oct;61(10):2308-19. doi: 10.1111/j.1558-5646.2007.00214.x. Epub 2007 Aug 23.
10
Genetic architecture of quantitative flower and leaf traits in a pair of sympatric sister species of Primulina.
Heredity (Edinb). 2019 Jun;122(6):864-876. doi: 10.1038/s41437-018-0170-2. Epub 2018 Dec 5.

引用本文的文献

1
An integrated QTL and RNA-seq analysis revealed new petal morphology loci in Brassica napus L.
Biotechnol Biofuels Bioprod. 2024 Jul 18;17(1):105. doi: 10.1186/s13068-024-02551-z.
2
Plastic responses to novel environments are biased towards phenotype dimensions with high additive genetic variation.
Proc Natl Acad Sci U S A. 2019 Jul 2;116(27):13452-13461. doi: 10.1073/pnas.1821066116. Epub 2019 Jun 19.
3
Allocation to male vs female floral function varies by currency and responds differentially to density and moisture stress.
Heredity (Edinb). 2017 Nov;119(5):349-359. doi: 10.1038/hdy.2017.41. Epub 2017 Aug 2.
6
Accessibility, constraint, and repetition in adaptive floral evolution.
Dev Biol. 2016 Nov 1;419(1):175-183. doi: 10.1016/j.ydbio.2016.05.003. Epub 2016 May 3.
7
Evolutionary constraints or opportunities?
Biosystems. 2014 Apr 22;120C:21-30. doi: 10.1016/j.biosystems.2014.04.005.
8
QTL architecture of reproductive fitness characters in Brassica rapa.
BMC Plant Biol. 2014 Mar 18;14:66. doi: 10.1186/1471-2229-14-66.
9
Indirect effects of domestic and wild herbivores on butterflies in an African savanna.
Ecol Evol. 2013 Oct;3(11):3672-82. doi: 10.1002/ece3.744. Epub 2013 Sep 5.
10
Spatially and temporally varying selection on intrapopulation quantitative trait loci for a life history trade-off in Mimulus guttatus.
Mol Ecol. 2012 Aug;21(15):3718-28. doi: 10.1111/j.1365-294X.2012.05662.x. Epub 2012 Jun 11.

本文引用的文献

2
GENETICS OF BRASSICA CAMPESTRIS. 1. GENETIC CONSTRAINTS ON EVOLUTION OF LIFE-HISTORY CHARACTERS.
Evolution. 1991 Mar;45(2):371-379. doi: 10.1111/j.1558-5646.1991.tb04411.x.
3
PLEIOTROPY CAUSES LONG-TERM GENETIC CONSTRAINTS ON LIFE-HISTORY EVOLUTION IN BRASSICA RAPA.
Evolution. 1996 Oct;50(5):1849-1858. doi: 10.1111/j.1558-5646.1996.tb03571.x.
4
HIERARCHICAL COMPARISON OF GENETIC VARIANCE-COVARIANCE MATRICES. I. USING THE FLURY HIERARCHY.
Evolution. 1999 Oct;53(5):1506-1515. doi: 10.1111/j.1558-5646.1999.tb05414.x.
6
Accuracy of mapping quantitative trait loci in autogamous species.
Theor Appl Genet. 1992 Sep;84(7-8):803-11. doi: 10.1007/BF00227388.
9
Development of public immortal mapping populations, molecular markers and linkage maps for rapid cycling Brassica rapa and B. oleracea.
Theor Appl Genet. 2009 Dec;120(1):31-43. doi: 10.1007/s00122-009-1157-4. Epub 2009 Sep 26.
10
Indirect effects of FRIGIDA: floral trait (co)variances are altered by seasonally variable abiotic factors associated with flowering time.
J Evol Biol. 2009 Sep;22(9):1826-38. doi: 10.1111/j.1420-9101.2009.01794.x. Epub 2009 Jul 3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验