Suppr超能文献

自折叠微图案聚合物容器。

Self-folding micropatterned polymeric containers.

机构信息

Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA.

出版信息

Biomed Microdevices. 2011 Feb;13(1):51-8. doi: 10.1007/s10544-010-9470-x.

Abstract

We demonstrate self-folding of precisely patterned, optically transparent, all-polymeric containers and describe their utility in mammalian cell and microorganism encapsulation and culture. The polyhedral containers, with SU-8 faces and biodegradable polycaprolactone (PCL) hinges, spontaneously assembled on heating. Self-folding was driven by a minimization of surface area of the liquefying PCL hinges within lithographically patterned two-dimensional (2D) templates. The strategy allowed for the fabrication of containers with variable polyhedral shapes, sizes and precisely defined porosities in all three dimensions. We provide proof-of-concept for the use of these polymeric containers as encapsulants for beads, chemicals, mammalian cells and bacteria. We also compare accelerated hinge degradation rates in alkaline solutions of varying pH. These optically transparent containers resemble three-dimensional (3D) micro-Petri dishes and can be utilized to sustain, monitor and deliver living biological components.

摘要

我们展示了精确图案化、光学透明的全聚合物容器的自折叠,并描述了它们在哺乳动物细胞和微生物封装和培养中的应用。这些具有 SU-8 面和可生物降解的聚己内酯 (PCL) 铰链的多面体容器在加热时会自动组装。自折叠是由在光刻二维 (2D) 模板内液化 PCL 铰链的表面积最小化驱动的。该策略允许制造具有可变多面体形状、尺寸和在所有三个维度上精确定义的孔隙率的容器。我们提供了使用这些聚合物容器作为珠粒、化学品、哺乳动物细胞和细菌封装剂的概念验证。我们还比较了在不同 pH 值的碱性溶液中铰链的降解速率。这些光学透明的容器类似于三维 (3D) 微培养皿,可用于维持、监测和输送活的生物成分。

相似文献

1
Self-folding micropatterned polymeric containers.
Biomed Microdevices. 2011 Feb;13(1):51-8. doi: 10.1007/s10544-010-9470-x.
2
3D lithographically fabricated nanoliter containers for drug delivery.
Adv Drug Deliv Rev. 2007 Dec 22;59(15):1547-61. doi: 10.1016/j.addr.2007.08.024. Epub 2007 Sep 4.
3
Self-folding polymeric containers for encapsulation and delivery of drugs.
Adv Drug Deliv Rev. 2012 Nov;64(14):1579-89. doi: 10.1016/j.addr.2012.02.012. Epub 2012 Mar 6.
4
Biodegradable polymeric capsules obtained via room temperature spray drying: preparation and characterization.
J Biomater Appl. 2011 May;25(8):825-49. doi: 10.1177/0885328210366489. Epub 2010 May 28.
5
Self-assembled three dimensional radio frequency (RF) shielded containers for cell encapsulation.
Biomed Microdevices. 2005 Dec;7(4):341-5. doi: 10.1007/s10544-005-6076-9.
7
Fabrication of polymeric microparticles for drug delivery by soft lithography.
Biomaterials. 2006 Jul;27(21):4034-41. doi: 10.1016/j.biomaterials.2006.03.011. Epub 2006 Mar 30.
8
Tailor-made polyelectrolyte microcapsules: from multilayers to smart containers.
Angew Chem Int Ed Engl. 2004 Jul 19;43(29):3762-83. doi: 10.1002/anie.200300568.

引用本文的文献

1
Mechanically-Guided 3D Assembly for Architected Flexible Electronics.
Chem Rev. 2023 Sep 27;123(18):11137-11189. doi: 10.1021/acs.chemrev.3c00335. Epub 2023 Sep 7.
2
4-Dimensional printing: exploring current and future capabilities in biomedical and healthcare systems-a Concise review.
Front Bioeng Biotechnol. 2023 Aug 22;11:1251425. doi: 10.3389/fbioe.2023.1251425. eCollection 2023.
3
Advances in 4D-printed physiological monitoring sensors.
Exploration (Beijing). 2021 Dec 16;1(3):20210033. doi: 10.1002/EXP.20210033. eCollection 2021 Dec.
4
Advances in Biodegradable Soft Robots.
Polymers (Basel). 2022 Oct 28;14(21):4574. doi: 10.3390/polym14214574.
5
An insight into biomimetic 4D printing.
RSC Adv. 2019 Nov 22;9(65):38209-38226. doi: 10.1039/c9ra07342f. eCollection 2019 Nov 19.
6
Materials and technical innovations in 3D printing in biomedical applications.
J Mater Chem B. 2020 Apr 21;8(15):2930-2950. doi: 10.1039/d0tb00034e. Epub 2020 Apr 2.
7
Review of Polymeric Materials in 4D Printing Biomedical Applications.
Polymers (Basel). 2019 Nov 12;11(11):1864. doi: 10.3390/polym11111864.
8
Capillary Transport of Miniature Soft Ribbons.
Micromachines (Basel). 2019 Oct 11;10(10):684. doi: 10.3390/mi10100684.
10
Modelling Cell Origami via a Tensegrity Model of the Cytoskeleton in Adherent Cells.
Appl Bionics Biomech. 2019 Aug 14;2019:8541303. doi: 10.1155/2019/8541303. eCollection 2019.

本文引用的文献

1
Three dimensional nanofabrication using surface forces.
Langmuir. 2010 Nov 2;26(21):16534-9. doi: 10.1021/la1013889.
2
Micro-masonry: construction of 3D structures by microscale self-assembly.
Adv Mater. 2010 Jun 18;22(23):2538-41. doi: 10.1002/adma.200903893.
3
Three-dimensional fabrication at small size scales.
Small. 2010 Apr 9;6(7):792-806. doi: 10.1002/smll.200901704.
4
SU-8-based immunoisolative microcontainer with nanoslots defined by nanoimprint lithography.
J Vac Sci Technol B Microelectron Nanometer Struct Process Meas Phenom. 2009;27(6):2795-2800. doi: 10.1116/1.3258146.
5
Self-assembly of lithographically patterned nanoparticles.
Nano Lett. 2009 Dec;9(12):4049-52. doi: 10.1021/nl9022176.
6
Size selective sampling using mobile, 3D nanoporous membranes.
Anal Bioanal Chem. 2009 Feb;393(4):1217-24. doi: 10.1007/s00216-008-2538-2. Epub 2008 Dec 10.
7
Building communities one bacterium at a time.
Proc Natl Acad Sci U S A. 2008 Nov 25;105(47):18075-6. doi: 10.1073/pnas.0810201106. Epub 2008 Nov 19.
8
The in vivo stability of electrospun polycaprolactone-collagen scaffolds in vascular reconstruction.
Biomaterials. 2009 Feb;30(4):583-8. doi: 10.1016/j.biomaterials.2008.10.006. Epub 2008 Nov 5.
9
Self-loading lithographically structured microcontainers: 3D patterned, mobile microwells.
Lab Chip. 2008 Oct;8(10):1621-4. doi: 10.1039/b809098j. Epub 2008 Sep 1.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验