Suppr超能文献

软气动微致动器协调运动实现平面到管状结构的形态转变。

Morphological Transformation between Flat and Tube Structures by Coordinated Motions of Soft Pneumatic Microactuators.

机构信息

Ritsumeikan University, College of Science and Engineering, Department of Mechanical Engineering, Kusatsu, 525-8577, Japan.

Ritsumeikan University, Graduate School of Science and Engineering, Kusatsu, 525-8577, Japan.

出版信息

Sci Rep. 2019 Oct 9;9(1):14483. doi: 10.1038/s41598-019-50670-7.

Abstract

Microactuators are the most distinctive and challenging microdevices among micro electromechanical systems (MEMS) relative to microsensors or electronic circuits. Soft and flexible microactuators have been achieved by introducing polymers as structural materials in addition to conventional materials. Expanding the application of MEMS to the biomedical field requires particular features, such as softness and small devices. It is important to address small and fragile biological objects while satisfying the demand for minimally invasive medicine. Both MEMS and biomedical applications require three-dimensional microstructures for higher-order functions. In general, microactuators are limited to simple motions such as bending. Our group has developed an openable artificial small intestinal tract system. An array of pneumatic balloon actuators (PBAs) transforms a flat structure into a tube structure representing the small intestine. Coordination of the bending motions of the PBAs enables the formation of a three-dimensional tube structure. Each PBA is 400 μm × 1800 μm × 100 μm. The diameter of the tube structure is 1 mm. Additional higher-order functions of the artificial small intestine, such as peristaltic motion, are currently of interest for us. This paper describes the morphological transformation of a soft microstructure and further potential possibilities of coordinated motions of soft microactuators.

摘要

微致动器是微机电系统 (MEMS) 中最具特色和挑战性的微器件,与微传感器或电子电路相比。除了传统材料外,通过引入聚合物作为结构材料,已经实现了柔软和灵活的微致动器。将 MEMS 应用扩展到生物医学领域需要特定的特性,例如柔软性和小型设备。在满足微创医学需求的同时,处理小而脆弱的生物物体非常重要。MEMS 和生物医学应用都需要三维微结构来实现更高阶的功能。一般来说,微致动器仅限于简单的运动,如弯曲。我们小组已经开发出一种可开启的人工小肠系统。一系列气动气球致动器 (PBA) 将扁平结构转换为代表小肠的管状结构。PBA 的弯曲运动的协调使三维管状结构的形成成为可能。每个 PBA 的尺寸为 400μm×1800μm×100μm。管结构的直径为 1mm。我们目前对人工小肠的其他高阶功能,如蠕动运动感兴趣。本文描述了软微结构的形态转换以及软微致动器协调运动的进一步潜在可能性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/10a5/6785533/e829065800f9/41598_2019_50670_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验