Suppr超能文献

运用基于密度的方法阐明十七个人外周血 B 细胞亚群,并对破伤风应答进行定量分析,该方法可用于多维流式细胞术数据中细胞群体的自动识别。

Elucidation of seventeen human peripheral blood B-cell subsets and quantification of the tetanus response using a density-based method for the automated identification of cell populations in multidimensional flow cytometry data.

机构信息

Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA.

出版信息

Cytometry B Clin Cytom. 2010;78 Suppl 1(Suppl 1):S69-82. doi: 10.1002/cyto.b.20554.

Abstract

BACKGROUND

Advances in multiparameter flow cytometry (FCM) now allow for the independent detection of larger numbers of fluorochromes on individual cells, generating data with increasingly higher dimensionality. The increased complexity of these data has made it difficult to identify cell populations from high-dimensional FCM data using traditional manual gating strategies based on single-color or two-color displays.

METHODS

To address this challenge, we developed a novel program, FLOCK (FLOw Clustering without K), that uses a density-based clustering approach to algorithmically identify biologically relevant cell populations from multiple samples in an unbiased fashion, thereby eliminating operator-dependent variability.

RESULTS

FLOCK was used to objectively identify seventeen distinct B-cell subsets in a human peripheral blood sample and to identify and quantify novel plasmablast subsets responding transiently to tetanus and other vaccinations in peripheral blood. FLOCK has been implemented in the publically available Immunology Database and Analysis Portal-ImmPort (http://www.immport.org)-for open use by the immunology research community.

CONCLUSIONS

FLOCK is able to identify cell subsets in experiments that use multiparameter FCM through an objective, automated computational approach. The use of algorithms like FLOCK for FCM data analysis obviates the need for subjective and labor-intensive manual gating to identify and quantify cell subsets. Novel populations identified by these computational approaches can serve as hypotheses for further experimental study.

摘要

背景

多参数流式细胞术(FCM)的进步现在允许在单个细胞上独立检测更多数量的荧光染料,从而产生具有越来越高维度的数据集。这些数据的复杂性增加使得使用基于单色或双色显示的传统手动门控策略从高维 FCM 数据中识别细胞群体变得困难。

方法

为了应对这一挑战,我们开发了一种新的程序,FLOCK(无 K 的流式聚类),它使用基于密度的聚类方法,以无偏的方式从多个样本中自动识别生物学上相关的细胞群体,从而消除了操作员依赖性的变异性。

结果

FLOCK 用于客观地识别人类外周血样本中的十七个独特的 B 细胞亚群,并识别和量化对外周血中破伤风和其他疫苗反应的新型浆母细胞亚群。FLOCK 已在公共可用的免疫数据库和分析门户-ImmPort(http://www.immport.org)中实现,供免疫学界公开使用。

结论

FLOCK 能够通过客观、自动的计算方法识别多参数 FCM 实验中的细胞亚群。像 FLOCK 这样的算法用于 FCM 数据分析消除了对主观和劳动密集型手动门控的需求,以识别和量化细胞亚群。这些计算方法识别的新群体可以作为进一步实验研究的假设。

相似文献

5
Analysis of B cell subsets following pancreatic islet cell transplantation in a patient with type 1 diabetes by cytometric fingerprinting.
J Immunol Methods. 2011 Jan 5;363(2):233-44. doi: 10.1016/j.jim.2010.09.038. Epub 2010 Oct 8.
6
Frequency difference gating: a multivariate method for identifying subsets that differ between samples.
Cytometry. 2001 Sep 1;45(1):56-64. doi: 10.1002/1097-0320(20010901)45:1<56::aid-cyto1144>3.0.co;2-9.
7
NetFCM: a semi-automated web-based method for flow cytometry data analysis.
Cytometry A. 2014 Nov;85(11):969-77. doi: 10.1002/cyto.a.22510. Epub 2014 Jul 18.
10
Comparison of clustering methods for high-dimensional single-cell flow and mass cytometry data.
Cytometry A. 2016 Dec;89(12):1084-1096. doi: 10.1002/cyto.a.23030. Epub 2016 Dec 19.

引用本文的文献

2
AutoGater: a weakly supervised neural network model to gate cells in flow cytometric analyses.
Sci Rep. 2024 Oct 9;14(1):23581. doi: 10.1038/s41598-024-66936-8.
4
A cell-level discriminative neural network model for diagnosis of blood cancers.
Bioinformatics. 2023 Oct 3;39(10). doi: 10.1093/bioinformatics/btad585.
5
Plasma cells are not restricted to the CD27+ phenotype: characterization of CD27-CD43+ antibody-secreting cells.
Front Immunol. 2023 Jul 10;14:1165936. doi: 10.3389/fimmu.2023.1165936. eCollection 2023.
6
Statistical and machine learning methods for immunoprofiling based on single-cell data.
Hum Vaccin Immunother. 2023 Aug 1;19(2):2234792. doi: 10.1080/21645515.2023.2234792. Epub 2023 Jul 24.
7
Mapping Cell Phenomics with Multiparametric Flow Cytometry Assays.
Phenomics. 2022 Jan 9;2(4):272-281. doi: 10.1007/s43657-021-00031-0. eCollection 2022 Aug.
8
Identifying dynamical persistent biomarker structures for rare events using modern integrative machine learning approach.
Proteomics. 2023 Nov;23(21-22):e2200290. doi: 10.1002/pmic.202200290. Epub 2023 Mar 10.
9

本文引用的文献

1
B cells as therapeutic targets in SLE.
Nat Rev Rheumatol. 2010 Jun;6(6):326-37. doi: 10.1038/nrrheum.2010.68.
2
Hematopoietic cell types: prototype for a revised cell ontology.
J Biomed Inform. 2011 Feb;44(1):75-9. doi: 10.1016/j.jbi.2010.01.006. Epub 2010 Feb 1.
5
Atypical memory B cells are greatly expanded in individuals living in a malaria-endemic area.
J Immunol. 2009 Aug 1;183(3):2176-82. doi: 10.4049/jimmunol.0901297. Epub 2009 Jul 10.
6
Automated high-dimensional flow cytometric data analysis.
Proc Natl Acad Sci U S A. 2009 May 26;106(21):8519-24. doi: 10.1073/pnas.0903028106. Epub 2009 May 14.
8
Novel human transitional B cell populations revealed by B cell depletion therapy.
J Immunol. 2009 May 15;182(10):5982-93. doi: 10.4049/jimmunol.0801859.
9
Flow cytometric immunophenotyping: emerging as an important diagnostic tool in the evaluation of cytopenic patients.
Leuk Res. 2009 Aug;33(8):1020-1. doi: 10.1016/j.leukres.2009.02.029. Epub 2009 Mar 26.
10
Identification and characterization of a human CD5+ pre-naive B cell population.
J Immunol. 2009 Apr 1;182(7):4116-26. doi: 10.4049/jimmunol.0803391.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验