Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA.
Cytometry B Clin Cytom. 2010;78 Suppl 1(Suppl 1):S69-82. doi: 10.1002/cyto.b.20554.
Advances in multiparameter flow cytometry (FCM) now allow for the independent detection of larger numbers of fluorochromes on individual cells, generating data with increasingly higher dimensionality. The increased complexity of these data has made it difficult to identify cell populations from high-dimensional FCM data using traditional manual gating strategies based on single-color or two-color displays.
To address this challenge, we developed a novel program, FLOCK (FLOw Clustering without K), that uses a density-based clustering approach to algorithmically identify biologically relevant cell populations from multiple samples in an unbiased fashion, thereby eliminating operator-dependent variability.
FLOCK was used to objectively identify seventeen distinct B-cell subsets in a human peripheral blood sample and to identify and quantify novel plasmablast subsets responding transiently to tetanus and other vaccinations in peripheral blood. FLOCK has been implemented in the publically available Immunology Database and Analysis Portal-ImmPort (http://www.immport.org)-for open use by the immunology research community.
FLOCK is able to identify cell subsets in experiments that use multiparameter FCM through an objective, automated computational approach. The use of algorithms like FLOCK for FCM data analysis obviates the need for subjective and labor-intensive manual gating to identify and quantify cell subsets. Novel populations identified by these computational approaches can serve as hypotheses for further experimental study.
多参数流式细胞术(FCM)的进步现在允许在单个细胞上独立检测更多数量的荧光染料,从而产生具有越来越高维度的数据集。这些数据的复杂性增加使得使用基于单色或双色显示的传统手动门控策略从高维 FCM 数据中识别细胞群体变得困难。
为了应对这一挑战,我们开发了一种新的程序,FLOCK(无 K 的流式聚类),它使用基于密度的聚类方法,以无偏的方式从多个样本中自动识别生物学上相关的细胞群体,从而消除了操作员依赖性的变异性。
FLOCK 用于客观地识别人类外周血样本中的十七个独特的 B 细胞亚群,并识别和量化对外周血中破伤风和其他疫苗反应的新型浆母细胞亚群。FLOCK 已在公共可用的免疫数据库和分析门户-ImmPort(http://www.immport.org)中实现,供免疫学界公开使用。
FLOCK 能够通过客观、自动的计算方法识别多参数 FCM 实验中的细胞亚群。像 FLOCK 这样的算法用于 FCM 数据分析消除了对主观和劳动密集型手动门控的需求,以识别和量化细胞亚群。这些计算方法识别的新群体可以作为进一步实验研究的假设。