Suppr超能文献

DAFi:一种有向递归数据过滤和聚类方法,用于改进和解释数据聚类,从多色流式细胞术数据中识别细胞群体。

DAFi: A directed recursive data filtering and clustering approach for improving and interpreting data clustering identification of cell populations from polychromatic flow cytometry data.

机构信息

J. Craig Venter Institute, La Jolla, California.

La Jolla Institute for Allergy and Immunology, La Jolla, California.

出版信息

Cytometry A. 2018 Jun;93(6):597-610. doi: 10.1002/cyto.a.23371. Epub 2018 Apr 17.

Abstract

Computational methods for identification of cell populations from polychromatic flow cytometry data are changing the paradigm of cytometry bioinformatics. Data clustering is the most common computational approach to unsupervised identification of cell populations from multidimensional cytometry data. However, interpretation of the identified data clusters is labor-intensive. Certain types of user-defined cell populations are also difficult to identify by fully automated data clustering analysis. Both are roadblocks before a cytometry lab can adopt the data clustering approach for cell population identification in routine use. We found that combining recursive data filtering and clustering with constraints converted from the user manual gating strategy can effectively address these two issues. We named this new approach DAFi: Directed Automated Filtering and Identification of cell populations. Design of DAFi preserves the data-driven characteristics of unsupervised clustering for identifying novel cell subsets, but also makes the results interpretable to experimental scientists through mapping and merging the multidimensional data clusters into the user-defined two-dimensional gating hierarchy. The recursive data filtering process in DAFi helped identify small data clusters which are otherwise difficult to resolve by a single run of the data clustering method due to the statistical interference of the irrelevant major clusters. Our experiment results showed that the proportions of the cell populations identified by DAFi, while being consistent with those by expert centralized manual gating, have smaller technical variances across samples than those from individual manual gating analysis and the nonrecursive data clustering analysis. Compared with manual gating segregation, DAFi-identified cell populations avoided the abrupt cut-offs on the boundaries. DAFi has been implemented to be used with multiple data clustering methods including K-means, FLOCK, FlowSOM, and the ClusterR package. For cell population identification, DAFi supports multiple options including clustering, bisecting, slope-based gating, and reversed filtering to meet various autogating needs from different scientific use cases. © 2018 International Society for Advancement of Cytometry.

摘要

计算方法用于从多色流式细胞术数据中识别细胞群体正在改变流式细胞术生物信息学的范例。数据聚类是最常见的用于从多维流式细胞术数据中识别细胞群体的无监督计算方法。然而,对识别出的数据簇的解释是劳动密集型的。某些类型的用户定义的细胞群体也很难通过完全自动的数据聚类分析来识别。这两个问题都是细胞实验室在常规使用中采用数据聚类方法进行细胞群体识别之前必须解决的障碍。我们发现,将递归数据过滤和聚类与从用户手册门控策略转换而来的约束相结合,可以有效地解决这两个问题。我们将这种新方法命名为 DAFi:定向自动化过滤和识别细胞群体。DAFi 的设计保留了无监督聚类的数据分析驱动特性,用于识别新的细胞亚群,但通过将多维数据聚类映射和合并到用户定义的二维门控层次结构中,也使得实验科学家能够解释结果。DAFi 中的递归数据过滤过程有助于识别小的数据簇,如果仅使用数据聚类方法的单次运行,由于不相关的主要簇的统计干扰,这些小的数据簇很难解决。我们的实验结果表明,DAFi 识别的细胞群体的比例与专家集中手动门控的比例一致,但与单个手动门控分析和非递归数据聚类分析相比,样本之间的技术差异较小。与手动门控分离相比,DAFi 识别的细胞群体避免了边界上的突然截止。DAFi 已被实施为与多种数据聚类方法一起使用,包括 K-means、FLOCK、FlowSOM 和 ClusterR 包。对于细胞群体识别,DAFi 支持多种选项,包括聚类、二分、基于斜率的门控和反向过滤,以满足来自不同科学用例的各种自动门控需求。© 2018 国际细胞分析促进协会。

相似文献

5
Cluster stability in the analysis of mass cytometry data.质谱流式细胞术数据分析中的聚类稳定性
Cytometry A. 2017 Jan;91(1):73-84. doi: 10.1002/cyto.a.23001. Epub 2016 Oct 18.

引用本文的文献

7
Artificial intelligence and the hunt for immunological disorders.人工智能与免疫紊乱的探寻
Curr Opin Allergy Clin Immunol. 2020 Dec;20(6):565-573. doi: 10.1097/ACI.0000000000000691.
10
High-Throughput Analysis of Clinical Flow Cytometry Data by Automated Gating.通过自动设门对临床流式细胞术数据进行高通量分析。
Bioinform Biol Insights. 2019 Apr 3;13:1177932219838851. doi: 10.1177/1177932219838851. eCollection 2019.

本文引用的文献

4
Testing for differential abundance in mass cytometry data.检测质谱流式细胞术数据中的差异丰度。
Nat Methods. 2017 Jul;14(7):707-709. doi: 10.1038/nmeth.4295. Epub 2017 May 15.
10

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验