Suppr超能文献

深度测序海洋微生物宏转录组的定量分析。

Quantitative analysis of a deeply sequenced marine microbial metatranscriptome.

机构信息

Department of Marine Sciences, University of Georgia, Athens, GA 30602-3636, USA.

出版信息

ISME J. 2011 Mar;5(3):461-72. doi: 10.1038/ismej.2010.141. Epub 2010 Sep 16.

Abstract

The potential of metatranscriptomic sequencing to provide insights into the environmental factors that regulate microbial activities depends on how fully the sequence libraries capture community expression (that is, sample-sequencing depth and coverage depth), and the sensitivity with which expression differences between communities can be detected (that is, statistical power for hypothesis testing). In this study, we use an internal standard approach to make absolute (per liter) estimates of transcript numbers, a significant advantage over proportional estimates that can be biased by expression changes in unrelated genes. Coastal waters of the southeastern United States contain 1 × 10(12) bacterioplankton mRNA molecules per liter of seawater (200 mRNA molecules per bacterial cell). Even for the large bacterioplankton libraries obtained in this study (500,000 possible protein-encoding sequences in each of two libraries after discarding rRNAs and small RNAs from >1 million 454 FLX pyrosequencing reads), sample-sequencing depth was only 0.00001%. Expression levels of 82 genes diagnostic for transformations in the marine nitrogen, phosphorus and sulfur cycles ranged from below detection (<1 × 10(6) transcripts per liter) for 36 genes (for example, phosphonate metabolism gene phnH, dissimilatory nitrate reductase subunit napA) to >2.7 × 10(9) transcripts per liter (ammonia transporter amt and ammonia monooxygenase subunit amoC). Half of the categories for which expression was detected, however, had too few copy numbers for robust statistical resolution, as would be required for comparative (experimental or time-series) expression studies. By representing whole community gene abundance and expression in absolute units (per volume or mass of environment), 'omics' data can be better leveraged to improve understanding of microbially mediated processes in the ocean.

摘要

宏转录组测序在提供有关调节微生物活动的环境因素的见解方面具有潜力,这取决于序列文库在多大程度上全面捕获群落表达(即样本测序深度和覆盖深度),以及群落之间表达差异的检测灵敏度(即用于假设检验的统计功效)。在这项研究中,我们使用内部标准方法来对转录物数量进行绝对(每升)估计,这与比例估计相比具有显著优势,比例估计可能会因无关基因的表达变化而产生偏差。美国东南部沿海海域每升海水中含有 1×10(12)个细菌浮游生物 mRNA 分子(每细菌细胞约有 200 个 mRNA 分子)。即使对于本研究中获得的大型细菌浮游生物文库(两个文库中每个文库丢弃 rRNA 和小 RNA 后,有>100 万个 454 FLX 焦磷酸测序读数中可能有 50 万个蛋白质编码序列),样本测序深度也仅为 0.00001%。海洋氮、磷和硫循环转化的 82 个基因的表达水平从低于检测下限(<1×10(6)个转录物/升)的 36 个基因(例如,膦酸盐代谢基因 phnH,异化硝酸盐还原酶亚基 napA)到>2.7×10(9)个转录物/升(氨转运蛋白 amt 和氨单加氧酶亚基 amoC)。然而,在检测到表达的一半类别中,由于需要进行比较(实验或时间序列)表达研究,因此其拷贝数太少,无法进行稳健的统计解析。通过以绝对单位(每环境体积或质量)表示整个群落的基因丰度和表达,可以更好地利用“组学”数据来提高对海洋中微生物介导过程的理解。

相似文献

2
Microbial metatranscriptomics in a permanent marine oxygen minimum zone.海洋永久缺氧区中的微生物宏转录组学
Environ Microbiol. 2012 Jan;14(1):23-40. doi: 10.1111/j.1462-2920.2010.02400.x. Epub 2011 Jan 7.
7
Bacterial community transcription patterns during a marine phytoplankton bloom.海洋浮游植物爆发期间细菌群落的转录模式。
Environ Microbiol. 2012 Jan;14(1):228-39. doi: 10.1111/j.1462-2920.2011.02602.x. Epub 2011 Oct 11.
8
Microbial community gene expression in ocean surface waters.海洋表层水体中的微生物群落基因表达。
Proc Natl Acad Sci U S A. 2008 Mar 11;105(10):3805-10. doi: 10.1073/pnas.0708897105. Epub 2008 Mar 3.
10
Analysis of microbial gene transcripts in environmental samples.环境样品中微生物基因转录本的分析。
Appl Environ Microbiol. 2005 Jul;71(7):4121-6. doi: 10.1128/AEM.71.7.4121-4126.2005.

引用本文的文献

1
A genomic view of Earth's biomes.地球生物群落的基因组视角。
Nat Rev Genet. 2025 Sep 15. doi: 10.1038/s41576-025-00888-1.
7
Microbiome modeling: a beginner's guide.微生物组建模:初学者指南。
Front Microbiol. 2024 Jun 19;15:1368377. doi: 10.3389/fmicb.2024.1368377. eCollection 2024.

本文引用的文献

5
Abundances of crenarchaeal amoA genes and transcripts in the Pacific Ocean.太平洋中泉古菌 amoA 基因和转录本的丰度。
Environ Microbiol. 2010 Mar;12(3):679-88. doi: 10.1111/j.1462-2920.2009.02108.x. Epub 2009 Nov 25.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验