Suppr超能文献

拷贝数分析鉴定出卵巢癌中基因组位点之间的新相互作用。

Copy number analysis identifies novel interactions between genomic loci in ovarian cancer.

机构信息

Victorian Breast Cancer Research Consortium (VBCRC) Cancer Genetics Laboratory, Peter MacCallum Cancer Centre, East Melbourne, Australia.

出版信息

PLoS One. 2010 Sep 10;5(9):e11408. doi: 10.1371/journal.pone.0011408.

Abstract

Ovarian cancer is a heterogeneous disease displaying complex genomic alterations, and consequently, it has been difficult to determine the most relevant copy number alterations with the scale of studies to date. We obtained genome-wide copy number alteration (CNA) data from four different SNP array platforms, with a final data set of 398 ovarian tumours, mostly of the serous histological subtype. Frequent CNA aberrations targeted many thousands of genes. However, high-level amplicons and homozygous deletions enabled filtering of this list to the most relevant. The large data set enabled refinement of minimal regions and identification of rare amplicons such as at 1p34 and 20q11. We performed a novel co-occurrence analysis to assess cooperation and exclusivity of CNAs and analysed their relationship to patient outcome. Positive associations were identified between gains on 19 and 20q, gain of 20q and loss of X, and between several regions of loss, particularly 17q. We found weak correlations of CNA at genomic loci such as 19q12 with clinical outcome. We also assessed genomic instability measures and found a correlation of the number of higher amplitude gains with poorer overall survival. By assembling the largest collection of ovarian copy number data to date, we have been able to identify the most frequent aberrations and their interactions.

摘要

卵巢癌是一种异质性疾病,表现出复杂的基因组改变,因此,迄今为止,很难确定与研究规模最相关的拷贝数改变。我们从四个不同的 SNP 芯片平台获得了全基因组拷贝数改变(CNA)数据,最终数据集包含 398 个卵巢肿瘤,主要为浆液性组织学亚型。频繁的 CNA 异常靶向了数千个基因。然而,高水平的扩增子和纯合性缺失使我们能够筛选出最相关的基因。大数据集还能够细化最小区域,并识别出罕见的扩增子,如 1p34 和 20q11。我们进行了一项新的共发生分析,以评估 CNA 的合作和排他性,并分析它们与患者预后的关系。在 19 号和 20 号染色体上的增益、20 号染色体上的增益和 X 染色体上的缺失以及多个缺失区域之间存在正相关,特别是 17q。我们发现基因组位置(如 19q12)的 CNA 与临床结局之间存在弱相关性。我们还评估了基因组不稳定性指标,发现较高幅度增益的数量与整体生存率较差存在相关性。通过汇集迄今为止最大的卵巢拷贝数数据集,我们能够识别最常见的异常及其相互作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6f59/2937017/ca1e9f401a2b/pone.0011408.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验