Centre de Résonance Magnétique Biologique et Médicale, UMR Centre National de la Recherche Scientifique 6612, Faculté de Médecine de Marseille, Université de la Méditerranée, Marseille, France.
J Appl Physiol (1985). 2010 Dec;109(6):1769-78. doi: 10.1152/japplphysiol.01423.2009. Epub 2010 Sep 16.
We quantified energy production in 7 prepubescent boys (11.7 ± 0.6 yr) and 10 men (35.6 ± 7.8 yr) using (31)P-magnetic resonance spectroscopy to investigate whether development affects muscle energetics, given that resistance to fatigue has been reported to be larger before puberty. Each subject performed a finger flexions exercise at 0.7 Hz against a weight adjusted to 15% of their maximal voluntary strength for 3 min, followed by a 15-min recovery period. The total energy cost was similar in both groups throughout the exercise bout, whereas the interplay of the different metabolic pathways was different. At the onset of exercise, children exhibited a higher oxidative contribution (50 ± 15% in boys and 25 ± 8% in men, P < 0.05) to ATP production, whereas the phosphocreatine breakdown contribution was reduced (40 ± 10% in boys and 53 ± 12% in men, P < 0.05), likely as a compensatory mechanism. The anaerobic glycolysis activity was unaffected by maturation. The recovery phase also disclosed differences regarding the rates of proton efflux (6.2 ± 2.5 vs. 3.8 ± 1.9 mM · pH unit(-1) · min(-1), in boys and men, respectively, P < 0.05), and phosphocreatine recovery, which was significantly faster in boys than in men (rate constant of phosphocreatine recovery: 1.3 ± 0.5 vs. 0.7 ± 0.4 min(-1); V(max): 37.5 ± 14.5 vs. 21.1 ± 12.2 mM/min, in boys and men, respectively, P < 0.05). Our results obtained in vivo clearly showed that maturation affects muscle energetics. Children relied more on oxidative metabolism and less on creatine kinase reaction to meet energy demand during exercise. This phenomenon can be explained by a greater oxidative capacity, probably linked to a higher relative content in slow-twitch fibers before puberty.
我们使用(31)P 磁共振波谱法对 7 名青春期前男孩(11.7 ± 0.6 岁)和 10 名男性(35.6 ± 7.8 岁)的能量产生进行了量化,以研究发育是否会影响肌肉能量代谢,因为据报道,青春期前的抗疲劳能力更大。每个受试者在 0.7 Hz 下以 15%的最大自愿强度对抗重量进行 3 分钟的手指屈曲运动,然后进行 15 分钟的恢复期。在整个运动过程中,两组的总能量消耗相似,而不同代谢途径的相互作用则不同。在运动开始时,儿童表现出更高的氧化贡献(男孩为 50 ± 15%,男性为 25 ± 8%,P < 0.05),而磷酸肌酸分解的贡献降低(男孩为 40 ± 10%,男性为 53 ± 12%,P < 0.05),可能是一种代偿机制。无氧糖酵解活动不受成熟度影响。恢复期也揭示了质子流出率(男孩为 6.2 ± 2.5,男性为 3.8 ± 1.9 mM·pH 单位(-1)·min(-1),P < 0.05)和磷酸肌酸恢复率的差异,男孩的磷酸肌酸恢复率明显快于男性(磷酸肌酸恢复率常数:男孩为 1.3 ± 0.5,男性为 0.7 ± 0.4 min(-1);V(max):男孩为 37.5 ± 14.5,男性为 21.1 ± 12.2 mM/min,P < 0.05)。我们在体内获得的结果清楚地表明,成熟会影响肌肉能量代谢。儿童在运动期间更多地依赖氧化代谢,而较少依赖肌酸激酶反应来满足能量需求。这种现象可以用更大的氧化能力来解释,这可能与青春期前慢肌纤维的相对含量较高有关。