Suppr超能文献

一种将自由文本资格标准转化为可计算标准的实用方法。

A practical method for transforming free-text eligibility criteria into computable criteria.

机构信息

Stanford Center for Biomedical Informatics Research, Stanford University, Stanford, CA 94305, USA.

出版信息

J Biomed Inform. 2011 Apr;44(2):239-50. doi: 10.1016/j.jbi.2010.09.007. Epub 2010 Sep 17.

Abstract

Formalizing eligibility criteria in a computer-interpretable language would facilitate eligibility determination for study subjects and the identification of studies on similar patient populations. Because such formalization is extremely labor intensive, we transform the problem from one of fully capturing the semantics of criteria directly in a formal expression language to one of annotating free-text criteria in a format called ERGO annotation. The annotation can be done manually, or it can be partially automated using natural-language processing techniques. We evaluated our approach in three ways. First, we assessed the extent to which ERGO annotations capture the semantics of 1000 eligibility criteria randomly drawn from ClinicalTrials.gov. Second, we demonstrated the practicality of the annotation process in a feasibility study. Finally, we demonstrate the computability of ERGO annotation by using it to (1) structure a library of eligibility criteria, (2) search for studies enrolling specified study populations, and (3) screen patients for potential eligibility for a study. We therefore demonstrate a new and practical method for incrementally capturing the semantics of free-text eligibility criteria into computable form.

摘要

将资格标准形式化到计算机可解释的语言中,将有助于确定研究对象的资格,并识别针对类似患者人群的研究。由于这种形式化的工作非常繁重,因此我们将该问题从直接在正式表达语言中完全捕捉标准语义的问题转化为使用称为 ERGO 注释的格式对自由文本标准进行注释的问题。注释可以手动完成,也可以使用自然语言处理技术部分自动完成。我们通过三种方式评估了我们的方法。首先,我们评估了 ERGO 注释在多大程度上捕获了从 ClinicalTrials.gov 中随机抽取的 1000 条资格标准的语义。其次,我们在可行性研究中证明了注释过程的实用性。最后,我们通过使用 ERGO 注释(1)构建资格标准库,(2)搜索招募指定研究人群的研究,以及(3)筛选患者是否有资格参加某项研究,展示了 ERGO 注释的可计算性。因此,我们展示了一种新的实用方法,可逐步将自由文本资格标准的语义捕获到可计算的形式中。

相似文献

1
A practical method for transforming free-text eligibility criteria into computable criteria.
J Biomed Inform. 2011 Apr;44(2):239-50. doi: 10.1016/j.jbi.2010.09.007. Epub 2010 Sep 17.
5
ClinicalTrials.gov as a data source for semi-automated point-of-care trial eligibility screening.
PLoS One. 2014 Oct 21;9(10):e111055. doi: 10.1371/journal.pone.0111055. eCollection 2014.
7
EliXR: an approach to eligibility criteria extraction and representation.
J Am Med Inform Assoc. 2011 Dec;18 Suppl 1(Suppl 1):i116-24. doi: 10.1136/amiajnl-2011-000321. Epub 2011 Jul 31.
8
9
Formal representation of eligibility criteria: a literature review.
J Biomed Inform. 2010 Jun;43(3):451-67. doi: 10.1016/j.jbi.2009.12.004. Epub 2009 Dec 23.
10
Beyond genes, proteins, and abstracts: Identifying scientific claims from full-text biomedical articles.
J Biomed Inform. 2010 Apr;43(2):173-89. doi: 10.1016/j.jbi.2009.11.001. Epub 2009 Nov 10.

引用本文的文献

1
Enhancing biomarker based oncology trial matching using large language models.
NPJ Digit Med. 2025 May 6;8(1):250. doi: 10.1038/s41746-025-01673-4.
4
NeuroBridge: a prototype platform for discovery of the long-tail neuroimaging data.
Front Neuroinform. 2023 Aug 31;17:1215261. doi: 10.3389/fninf.2023.1215261. eCollection 2023.
5
Semantically enabling clinical decision support recommendations.
J Biomed Semantics. 2023 Jul 18;14(1):8. doi: 10.1186/s13326-023-00285-9.
6
A review of research on eligibility criteria for clinical trials.
Clin Exp Med. 2023 Oct;23(6):1867-1879. doi: 10.1007/s10238-022-00975-1. Epub 2023 Jan 5.
8
ELaPro, a LOINC-mapped core dataset for top laboratory procedures of eligibility screening for clinical trials.
BMC Med Res Methodol. 2022 May 14;22(1):141. doi: 10.1186/s12874-022-01611-y.
9
A Framework for Systematic Assessment of Clinical Trial Population Representativeness Using Electronic Health Records Data.
Appl Clin Inform. 2021 Aug;12(4):816-825. doi: 10.1055/s-0041-1733846. Epub 2021 Sep 8.

本文引用的文献

1
Analysis of eligibility criteria complexity in clinical trials.
Summit Transl Bioinform. 2010 Mar 1;2010:46-50.
2
Formal representation of eligibility criteria: a literature review.
J Biomed Inform. 2010 Jun;43(3):451-67. doi: 10.1016/j.jbi.2009.12.004. Epub 2009 Dec 23.
3
Definitions and qualifiers in SNOMED CT.
Methods Inf Med. 2009;48(2):178-83. Epub 2009 Feb 18.
4
An architecture for linking medical decision-support applications to clinical databases and its evaluation.
J Biomed Inform. 2009 Apr;42(2):203-18. doi: 10.1016/j.jbi.2008.10.007. Epub 2008 Nov 7.
6
Recruitment to randomised trials: strategies for trial enrollment and participation study. The STEPS study.
Health Technol Assess. 2007 Nov;11(48):iii, ix-105. doi: 10.3310/hta11480.
7
The SAGE Guideline Model: achievements and overview.
J Am Med Inform Assoc. 2007 Sep-Oct;14(5):589-98. doi: 10.1197/jamia.M2399. Epub 2007 Jun 28.
8
Mapping computerized clinical guidelines to electronic medical records: knowledge-data ontological mapper (KDOM).
J Biomed Inform. 2008 Feb;41(1):180-201. doi: 10.1016/j.jbi.2007.05.003. Epub 2007 May 16.
9
Relations in biomedical ontologies.
Genome Biol. 2005;6(5):R46. doi: 10.1186/gb-2005-6-5-r46. Epub 2005 Apr 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验