Suppr超能文献

从无中学习:重新思考微生物未检出情况的关键重要性

Learning Something From Nothing: The Critical Importance of Rethinking Microbial Non-detects.

作者信息

Chik Alex Ho Shing, Schmidt Philip J, Emelko Monica B

机构信息

Department of Civil and Environmental Engineering, Faculty of Engineering, University of Waterloo, Waterloo, ON, Canada.

Institute of Hydraulic Engineering and Water Resources Management, Vienna University of Technology, Vienna, Austria.

出版信息

Front Microbiol. 2018 Oct 5;9:2304. doi: 10.3389/fmicb.2018.02304. eCollection 2018.

Abstract

Accurate estimation of microbial concentrations is necessary to inform many important environmental science and public health decisions and regulations. Critically, widespread misconceptions about laboratory-reported microbial non-detects have led to their erroneous description and handling as "censored" values. This ultimately compromises their interpretation and undermines efforts to describe and model microbial concentrations accurately. Herein, these misconceptions are dispelled by (1) discussing the critical differences between discrete microbial observations and continuous data acquired using analytical chemistry methodologies and (2) demonstrating the bias introduced by statistical approaches tailored for chemistry data and misapplied to discrete microbial data. Notably, these approaches especially preclude the accurate representation of low concentrations and those estimated using microbial methods with low or variable analytical recovery, which can be expected to result in non-detects. Techniques that account for the probabilistic relationship between observed data and underlying microbial concentrations have been widely demonstrated, and their necessity for handling non-detects (in a way which is consistent with the handling of positive observations) is underscored herein. Habitual reporting of raw microbial observations and sample sizes is proposed to facilitate accurate estimation and analysis of microbial concentrations.

摘要

准确估算微生物浓度对于许多重要的环境科学和公共卫生决策及法规至关重要。关键的是,对实验室报告的微生物未检出情况存在广泛误解,导致其被错误地描述和处理为“删失”值。这最终损害了对它们的解读,并破坏了准确描述和模拟微生物浓度的努力。在此,通过(1)讨论离散微生物观测值与使用分析化学方法获取的连续数据之间的关键差异,以及(2)展示为化学数据量身定制且错误应用于离散微生物数据的统计方法所引入的偏差,来消除这些误解。值得注意的是,这些方法尤其无法准确表示低浓度以及那些使用分析回收率低或变化的微生物方法估算的浓度,而这些情况预计会导致未检出。考虑观测数据与潜在微生物浓度之间概率关系的技术已得到广泛证明,本文强调了它们处理未检出情况(以与处理阳性观测值一致的方式)的必要性。建议习惯性地报告原始微生物观测值和样本量,以促进对微生物浓度的准确估算和分析。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d8dd/6182096/b8059ec59e3c/fmicb-09-02304-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验