Suppr超能文献

编码Ehb氢化酶的操纵子的破坏限制了沼泽甲烷球菌中合成代谢二氧化碳的同化。

Disruption of the operon encoding Ehb hydrogenase limits anabolic CO2 assimilation in the archaeon Methanococcus maripaludis.

作者信息

Porat Iris, Kim Wonduck, Hendrickson Erik L, Xia Qiangwei, Zhang Yi, Wang Tiansong, Taub Fred, Moore Brian C, Anderson Iain J, Hackett Murray, Leigh John A, Whitman William B

机构信息

Department of Microbiology, University of Georgia, Athens, Georgia 30602-2605, USA.

出版信息

J Bacteriol. 2006 Feb;188(4):1373-80. doi: 10.1128/JB.188.4.1373-1380.2006.

Abstract

Methanococcus maripaludis is a mesophilic archaeon that reduces CO2 to methane with H2 or formate as an energy source. It contains two membrane-bound energy-conserving hydrogenases, Eha and Ehb. To determine the role of Ehb, a deletion in the ehb operon was constructed to yield the mutant, strain S40. Growth of S40 was severely impaired in minimal medium. Both acetate and yeast extract were necessary to restore growth to nearly wild-type levels, suggesting that Ehb was involved in multiple steps in carbon assimilation. However, no differences in the total hydrogenase specific activities were found between the wild type and mutant in either cell extracts or membrane-purified fractions. Methanogenesis by resting cells with pyruvate as the electron donor was also reduced by 30% in S40, suggesting a defect in pyruvate oxidation. CO dehydrogenase/acetyl coenzyme A (CoA) synthase and pyruvate oxidoreductase had higher specific activities in the mutant, and genes encoding these enzymes, as well as AMP-forming acetyl-CoA synthetase, were expressed at increased levels. These observations support a role for Ehb in anabolic CO2 assimilation in methanococci.

摘要

沼泽红球菌是一种嗜温古菌,它以氢气或甲酸盐作为能源将二氧化碳还原为甲烷。它含有两种膜结合的能量保守氢化酶,即Eha和Ehb。为了确定Ehb的作用,构建了ehb操纵子的缺失突变体,即菌株S40。S40在基本培养基中的生长严重受损。乙酸盐和酵母提取物都是将生长恢复到接近野生型水平所必需的,这表明Ehb参与了碳同化的多个步骤。然而,在细胞提取物或膜纯化组分中,野生型和突变体之间的总氢化酶比活性没有差异。以丙酮酸作为电子供体的静止细胞的产甲烷作用在S40中也降低了30%,这表明丙酮酸氧化存在缺陷。突变体中一氧化碳脱氢酶/乙酰辅酶A合酶和丙酮酸氧化还原酶具有更高的比活性,编码这些酶以及生成AMP的乙酰辅酶A合成酶的基因表达水平增加。这些观察结果支持Ehb在甲烷球菌的合成代谢二氧化碳同化中发挥作用。

相似文献

2
The importance of porE and porF in the anabolic pyruvate oxidoreductase of Methanococcus maripaludis.
Arch Microbiol. 2004 Jan;181(1):68-73. doi: 10.1007/s00203-003-0629-1. Epub 2003 Dec 4.
3
Characterization of energy-conserving hydrogenase B in Methanococcus maripaludis.
J Bacteriol. 2010 Aug;192(15):4022-30. doi: 10.1128/JB.01446-09. Epub 2010 May 28.
7
Metabolic processes of Methanococcus maripaludis and potential applications.
Microb Cell Fact. 2016 Jun 10;15(1):107. doi: 10.1186/s12934-016-0500-0.
8
Purification and catalytic properties of Ech hydrogenase from Methanosarcina barkeri.
Eur J Biochem. 1999 Oct 1;265(1):325-35. doi: 10.1046/j.1432-1327.1999.00738.x.
9
Regulation of formate dehydrogenase activity in Methanococcus thermolithotrophicus.
J Bacteriol. 1990 Mar;172(3):1464-9. doi: 10.1128/jb.172.3.1464-1469.1990.
10
Protein complexing in a methanogen suggests electron bifurcation and electron delivery from formate to heterodisulfide reductase.
Proc Natl Acad Sci U S A. 2010 Jun 15;107(24):11050-5. doi: 10.1073/pnas.1003653107. Epub 2010 Jun 1.

引用本文的文献

1
Formate and hydrogen in hydrothermal vents and their use by extremely thermophilic methanogens and heterotrophs.
Front Microbiol. 2023 Mar 6;14:1093018. doi: 10.3389/fmicb.2023.1093018. eCollection 2023.
4
Energy-converting hydrogenases: the link between H metabolism and energy conservation.
Cell Mol Life Sci. 2020 Apr;77(8):1461-1481. doi: 10.1007/s00018-019-03329-5. Epub 2019 Oct 19.
6
Genomic analysis of methanogenic archaea reveals a shift towards energy conservation.
BMC Genomics. 2017 Aug 21;18(1):639. doi: 10.1186/s12864-017-4036-4.
7
Exploring Hydrogenotrophic Methanogenesis: a Genome Scale Metabolic Reconstruction of Methanococcus maripaludis.
J Bacteriol. 2016 Nov 18;198(24):3379-3390. doi: 10.1128/JB.00571-16. Print 2016 Dec 15.
8
Metabolic processes of Methanococcus maripaludis and potential applications.
Microb Cell Fact. 2016 Jun 10;15(1):107. doi: 10.1186/s12934-016-0500-0.
10
Genetic resources for methane production from biomass described with the Gene Ontology.
Front Microbiol. 2014 Dec 3;5:634. doi: 10.3389/fmicb.2014.00634. eCollection 2014.

本文引用的文献

1
Role of Amino Acids and Vitamins in Nutrition of Mesophilic Methanococcus spp.
Appl Environ Microbiol. 1987 Oct;53(10):2373-8. doi: 10.1128/aem.53.10.2373-2378.1987.
2
Growth and plating efficiency of methanococci on agar media.
Appl Environ Microbiol. 1983 Jul;46(1):220-6. doi: 10.1128/aem.46.1.220-226.1983.
3
Complete genome sequence of the genetically tractable hydrogenotrophic methanogen Methanococcus maripaludis.
J Bacteriol. 2004 Oct;186(20):6956-69. doi: 10.1128/JB.186.20.6956-6969.2004.
4
Continuous culture of Methanococcus maripaludis under defined nutrient conditions.
FEMS Microbiol Lett. 2004 Sep 1;238(1):85-91. doi: 10.1016/j.femsle.2004.07.021.
5
Two biosynthetic pathways for aromatic amino acids in the archaeon Methanococcus maripaludis.
J Bacteriol. 2004 Aug;186(15):4940-50. doi: 10.1128/JB.186.15.4940-4950.2004.
6
Energy-converting [NiFe] hydrogenases from archaea and extremophiles: ancestors of complex I.
J Bioenerg Biomembr. 2004 Feb;36(1):65-75. doi: 10.1023/b:jobb.0000019599.43969.33.
7
8
The importance of porE and porF in the anabolic pyruvate oxidoreductase of Methanococcus maripaludis.
Arch Microbiol. 2004 Jan;181(1):68-73. doi: 10.1007/s00203-003-0629-1. Epub 2003 Dec 4.
9
A simple energy-conserving system: proton reduction coupled to proton translocation.
Proc Natl Acad Sci U S A. 2003 Jun 24;100(13):7545-50. doi: 10.1073/pnas.1331436100. Epub 2003 Jun 5.
10
The anabolic pyruvate oxidoreductase from Methanococcus maripaludis.
Arch Microbiol. 2003 Jun;179(6):444-56. doi: 10.1007/s00203-003-0554-3. Epub 2003 May 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验