Suppr超能文献

瘤胃微生物种群对高谷物日粮的适应动态。

Rumen microbial population dynamics during adaptation to a high-grain diet.

机构信息

Department of Animal Science, Oklahoma State University, Stillwater, OK 74078, USA.

出版信息

Appl Environ Microbiol. 2010 Nov;76(22):7482-90. doi: 10.1128/AEM.00388-10. Epub 2010 Sep 17.

Abstract

High-grain adaptation programs are widely used with feedlot cattle to balance enhanced growth performance against the risk of acidosis. This adaptation to a high-grain diet from a high-forage diet is known to change the rumen microbial population structure and help establish a stable microbial population within the rumen. Therefore, to evaluate bacterial population dynamics during adaptation to a high-grain diet, 4 ruminally cannulated beef steers were adapted to a high-grain diet using a step-up diet regimen containing grain and hay at ratios of 20:80, 40:60, 60:40, and 80:20. The rumen bacterial populations were evaluated at each stage of the step-up diet after 1 week of adaptation, before the steers were transitioned to the next stage of the diet, using terminal restriction fragment length polymorphism (T-RFLP) analysis, 16S rRNA gene libraries, and quantitative real-time PCR. The T-RFLP analysis displayed a shift in the rumen microbial population structure during the final two stages of the step-up diet. The 16S rRNA gene libraries demonstrated two distinct rumen microbial populations in hay-fed and high-grain-fed animals and detected only 24 common operational taxonomic units out of 398 and 315, respectively. The 16S rRNA gene libraries of hay-fed animals contained a significantly higher number of bacteria belonging to the phylum Fibrobacteres, whereas the 16S rRNA gene libraries of grain-fed animals contained a significantly higher number of bacteria belonging to the phylum Bacteroidetes. Real-time PCR analysis detected significant fold increases in the Megasphaera elsdenii, Streptococcus bovis, Selenomonas ruminantium, and Prevotella bryantii populations during adaptation to the high-concentrate (high-grain) diet, whereas the Butyrivibrio fibrisolvens and Fibrobacter succinogenes populations gradually decreased as the animals were adapted to the high-concentrate diet. This study evaluates the rumen microbial population using several molecular approaches and presents a broader picture of the rumen microbial population structure during adaptation to a high-grain diet from a forage diet.

摘要

高谷物适应计划广泛应用于育肥牛,以平衡增强的生长性能和酸中毒的风险。从高草料饮食向高谷物饮食的这种适应被认为会改变瘤胃微生物种群结构,并有助于在瘤胃内建立稳定的微生物种群。因此,为了评估适应高谷物饮食过程中细菌种群的动态变化,使用包含谷物和干草比例为 20:80、40:60、60:40 和 80:20 的逐步递增饮食方案,对 4 头瘤胃插管的肉牛进行了高谷物饮食适应。在适应 1 周后,在牛过渡到饮食的下一阶段之前,使用末端限制性片段长度多态性 (T-RFLP) 分析、16S rRNA 基因文库和定量实时 PCR 评估逐步递增饮食的每个阶段的瘤胃细菌种群。T-RFLP 分析显示,在逐步递增饮食的最后两个阶段,瘤胃微生物种群结构发生了变化。16S rRNA 基因文库显示,在干草喂养和高谷物喂养的动物中存在两个不同的瘤胃微生物种群,并且在分别为 398 和 315 的 24 个共有操作分类单位中仅检测到 24 个共有操作分类单位。干草喂养动物的 16S rRNA 基因文库中属于纤维杆菌门的细菌数量明显较高,而谷物喂养动物的 16S rRNA 基因文库中属于拟杆菌门的细菌数量明显较高。实时 PCR 分析检测到在适应高浓缩物(高谷物)饮食过程中,Megasphaera elsdenii、Streptococcus bovis、Selenomonas ruminantium 和 Prevotella bryantii 种群的显著倍数增加,而 Butyrivibrio fibrisolvens 和 Fibrobacter succinogenes 种群随着动物适应高浓缩物饮食而逐渐减少。本研究使用几种分子方法评估瘤胃微生物种群,并更全面地描述了从草料饮食向高谷物饮食适应过程中瘤胃微生物种群结构。

相似文献

1
Rumen microbial population dynamics during adaptation to a high-grain diet.
Appl Environ Microbiol. 2010 Nov;76(22):7482-90. doi: 10.1128/AEM.00388-10. Epub 2010 Sep 17.
2
Diet-dependent shifts in the bacterial population of the rumen revealed with real-time PCR.
Appl Environ Microbiol. 2001 Jun;67(6):2766-74. doi: 10.1128/AEM.67.6.2766-2774.2001.
4
Impact of subacute ruminal acidosis (SARA) adaptation and recovery on the density and diversity of bacteria in the rumen of dairy cows.
FEMS Microbiol Ecol. 2011 Nov;78(2):275-84. doi: 10.1111/j.1574-6941.2011.01154.x. Epub 2011 Jul 14.
6
Phylogenetic diversity and dietary association of rumen Treponema revealed using group-specific 16S rRNA gene-based analysis.
FEMS Microbiol Lett. 2011 Mar;316(1):51-60. doi: 10.1111/j.1574-6968.2010.02191.x. Epub 2011 Jan 17.
7
Analysis of the rumen bacterial diversity of goats during shift from forage to concentrate diet.
Anaerobe. 2016 Dec;42:17-26. doi: 10.1016/j.anaerobe.2016.07.002. Epub 2016 Jul 12.
8
Genetic diversity and diet specificity of ruminal Prevotella revealed by 16S rRNA gene-based analysis.
FEMS Microbiol Lett. 2010 Apr;305(1):49-57. doi: 10.1111/j.1574-6968.2010.01911.x. Epub 2010 Jan 27.
9
Changes in the rumen epimural bacterial diversity of beef cattle as affected by diet and induced ruminal acidosis.
Appl Environ Microbiol. 2013 Jun;79(12):3744-55. doi: 10.1128/AEM.03983-12. Epub 2013 Apr 12.

引用本文的文献

1
Understanding the differences in rumen bacteria and their impact on dairy cows' production performance: A review.
Anim Nutr. 2025 Jul 9;22:259-279. doi: 10.1016/j.aninu.2025.04.006. eCollection 2025 Sep.
2
Multi-omics reveals effects of diet FNDF/starch level on growth performance and rumen development of Hu sheep.
Front Microbiol. 2025 Aug 5;16:1601950. doi: 10.3389/fmicb.2025.1601950. eCollection 2025.
3
Gut microbiota contribute to high-altitude adaptation in tree sparrows.
mSystems. 2025 Aug 19;10(8):e0063025. doi: 10.1128/msystems.00630-25. Epub 2025 Jul 31.
4
Dietary Fermentation with sp. and sp. Modulates Rumen Transcriptomic and Microbiota Profiles in .
Int J Mol Sci. 2025 Jul 16;26(14):6816. doi: 10.3390/ijms26146816.
7
Correlation between gastrointestinal morphological changes, enteric microbiota, and changes in live weight in dairy calves.
JDS Commun. 2024 Oct 30;6(2):197-201. doi: 10.3168/jdsc.2024-0620. eCollection 2025 Mar.
8
Encapsulated phytogenic oils enhance in vitro rumen fermentation and reduce methane emissions.
BMC Vet Res. 2025 May 17;21(1):352. doi: 10.1186/s12917-025-04812-x.

本文引用的文献

1
Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities.
Appl Environ Microbiol. 2009 Dec;75(23):7537-41. doi: 10.1128/AEM.01541-09. Epub 2009 Oct 2.
2
Infernal 1.0: inference of RNA alignments.
Bioinformatics. 2009 May 15;25(10):1335-7. doi: 10.1093/bioinformatics/btp157. Epub 2009 Mar 23.
3
Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy.
Appl Environ Microbiol. 2007 Aug;73(16):5261-7. doi: 10.1128/AEM.00062-07. Epub 2007 Jun 22.
4
Ruminal acidosis in beef cattle: the current microbiological and nutritional outlook.
J Dairy Sci. 2007 Jun;90 Suppl 1:E17-38. doi: 10.3168/jds.2006-478.
5
An obesity-associated gut microbiome with increased capacity for energy harvest.
Nature. 2006 Dec 21;444(7122):1027-31. doi: 10.1038/nature05414.
6
Interactive Tree Of Life (iTOL): an online tool for phylogenetic tree display and annotation.
Bioinformatics. 2007 Jan 1;23(1):127-8. doi: 10.1093/bioinformatics/btl529. Epub 2006 Oct 18.
7
Diet-dependent shifts in ruminal butyrate-producing bacteria.
Folia Microbiol (Praha). 2006;51(4):294-8. doi: 10.1007/BF02931817.
10
16S rDNA directed PCR primers and detection of methanogens in the bovine rumen.
Lett Appl Microbiol. 2006 Mar;42(3):222-8. doi: 10.1111/j.1472-765X.2005.01833.x.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验