Suppr超能文献

植入前和植入后工程心脏瓣膜组织的三维定量微观形态学。

Three-dimensional quantitative micromorphology of pre- and post-implanted engineered heart valve tissues.

机构信息

Department of Bioengineering, Swanson School of Engineering, McGowan Institute for Regenerative Medicine, University of Pittsburgh, 300 Technology Drive, Suite 300, Pittsburgh, PA 15219, USA.

出版信息

Ann Biomed Eng. 2011 Jan;39(1):205-22. doi: 10.1007/s10439-010-0162-8. Epub 2010 Sep 18.

Abstract

There is a significant gap in our knowledge of engineered heart valve tissue (EHVT) development regarding detailed three-dimensional (3D) tissue formation and remodeling from the point of in vitro culturing to full in vivo function. As a step toward understanding the complexities of EHVT formation and remodeling, a novel serial confocal microscopy technique was employed to obtain 3D microstructural information of pre-implant (PRI) and post-implant for 12 weeks (POI) EHVT fabricated from PGA:PLLA scaffolds and seeded with ovine bone-marrow-derived mesenchymal stem cells. Custom scaffold fiber tracking software was developed to quantify scaffold fiber architectural features such as length, tortuosity, and minimum scaffold fiber-fiber separation distance and scaffold fiber orientation was quantified utilizing a 3D fabric tensor. In addition, collagen and cellular density of ovine pulmonary valve leaflet tissue were also analyzed for baseline comparisons. Results indicated that in the unseeded state, scaffold fibers formed a continuous, oriented network. In the PRI state, the scaffold showed some fragmentation with a scaffold volume fraction of 7.79%. In the POI specimen, the scaffold became highly fragmented, forming a randomly distributed short fibrous network (volume fraction of 2.03%) within a contiguous, dense collagenous matrix. Both PGA and PLLA scaffold fibers were observed in the PRI and POI specimens. Collagen density remained similar in both PRI and POI specimens (74.2 and 71.5%, respectively), though the distributions in the transmural direction appeared slightly more homogenous in the POI specimen. Finally, to guide future 2D histological studies for large-scale studies (since acquisition of high-resolution volumetric data is not practical for all specimens), we investigated changes in relevant collagen and scaffold metrics (collagen density and scaffold fiber orientation) with varying section spacing. It was found that a sectioning spacing up to 25 μm (for scaffold morphology) and 50 μm (for collagen density) in both PRI and POI tissues did not result in loss of information fidelity, and that sectioning in the circumferential or radial direction provides the greatest preservation of information. This is the first known work to investigate EHVT microstructure over a large volume with high resolution and to investigate time evolving in vivo EHVT morphology. The important scaffold fiber structural changes observed provide morphological information crucial for guiding future structurally based constitutive modeling efforts focused on better understanding EHVT tissue formation and remodeling.

摘要

关于从体外培养到完全体内功能的工程心脏瓣膜组织 (EHVT) 发育的详细三维 (3D) 组织形成和重塑,我们的知识存在重大差距。作为理解 EHVT 形成和重塑复杂性的一步,采用新型连续共聚焦显微镜技术获得了从 PGA:PLLA 支架体外培养和接种绵羊骨髓间充质干细胞的预植入 (PRI) 和植入后 12 周 (POI) EHVT 的 3D 微观结构信息。开发了定制的支架纤维跟踪软件来量化支架纤维结构特征,例如长度、扭曲度和最小支架纤维-纤维分离距离,并利用 3D 织物张量量化支架纤维取向。此外,还分析了绵羊肺动脉瓣叶组织的胶原和细胞密度作为基线比较。结果表明,在未接种状态下,支架纤维形成连续的、定向的网络。在 PRI 状态下,支架出现一些碎片化,支架体积分数为 7.79%。在 POI 标本中,支架高度碎片化,在连续致密的胶原基质内形成随机分布的短纤维网络(体积分数为 2.03%)。在 PRI 和 POI 标本中均观察到 PGA 和 PLLA 支架纤维。尽管在 POI 标本中,在整个壁方向的分布似乎稍微更均匀,但 PRI 和 POI 标本中的胶原密度相似(分别为 74.2%和 71.5%)。最后,为了指导未来的二维组织学研究(由于对于所有标本来说,获取高分辨率体积数据是不实际的),我们研究了在不同切片间距下相关胶原和支架指标(胶原密度和支架纤维取向)的变化。结果发现,在 PRI 和 POI 组织中,切片间距高达 25μm(用于支架形态)和 50μm(用于胶原密度)不会导致信息保真度的损失,并且在圆周或径向方向切片可以提供最大的信息保留。这是首次使用高分辨率研究 EHVT 微观结构并研究体内 EHVT 形态随时间演变的研究。观察到的重要支架纤维结构变化提供了对指导未来基于结构的本构建模工作至关重要的形态学信息,这些工作旨在更好地理解 EHVT 组织的形成和重塑。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5d10/3035202/af79d4f60e98/nihms265304f1.jpg

相似文献

4
Early in vivo experience with tissue-engineered trileaflet heart valves.组织工程三叶心脏瓣膜的早期体内实验经验。
Circulation. 2000 Nov 7;102(19 Suppl 3):III22-9. doi: 10.1161/01.cir.102.suppl_3.iii-22.

引用本文的文献

3
GPU-accelerated ray-casting for 3D fiber orientation analysis.GPU 加速的射线投射法用于三维纤维方向分析。
PLoS One. 2020 Jul 29;15(7):e0236420. doi: 10.1371/journal.pone.0236420. eCollection 2020.
4
Materials and manufacturing perspectives in engineering heart valves: a review.工程心脏瓣膜的材料与制造前景:综述
Mater Today Bio. 2019 Dec 5;5:100038. doi: 10.1016/j.mtbio.2019.100038. eCollection 2020 Jan.
5
Tissue-Engineered Heart Valves: A Call for Mechanistic Studies.组织工程心脏瓣膜:对机制研究的呼吁。
Tissue Eng Part B Rev. 2018 Jun;24(3):240-253. doi: 10.1089/ten.TEB.2017.0425. Epub 2018 Feb 13.
7
New technologies for surgery of the congenital cardiac defect.先天性心脏缺陷手术的新技术。
Rambam Maimonides Med J. 2013 Jul 25;4(3):e0019. doi: 10.5041/RMMJ.10119. Print 2013 Jul.

本文引用的文献

1
In vivo monitoring of function of autologous engineered pulmonary valve.自体工程肺动脉瓣功能的体内监测。
J Thorac Cardiovasc Surg. 2010 Mar;139(3):723-31. doi: 10.1016/j.jtcvs.2009.11.006.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验