Suppr超能文献

组织工程心脏瓣膜:对机制研究的呼吁。

Tissue-Engineered Heart Valves: A Call for Mechanistic Studies.

机构信息

1 Center for Regenerative Medicine, The Research Institute at Nationwide Children's Hospital , Columbus, Ohio.

2 The Ohio State University College of Medicine , Columbus, Ohio.

出版信息

Tissue Eng Part B Rev. 2018 Jun;24(3):240-253. doi: 10.1089/ten.TEB.2017.0425. Epub 2018 Feb 13.

Abstract

Heart valve disease carries a substantial risk of morbidity and mortality. Outcomes are significantly improved by valve replacement, but currently available mechanical and biological replacement valves are associated with complications of their own. Mechanical valves have a high rate of thromboembolism and require lifelong anticoagulation. Biological prosthetic valves have a much shorter lifespan, and they are prone to tearing and degradation. Both types of valves lack the capacity for growth, making them particularly problematic in pediatric patients. Tissue engineering has the potential to overcome these challenges by creating a neovalve composed of native tissue that is capable of growth and remodeling. The first tissue-engineered heart valve (TEHV) was created more than 20 years ago in an ovine model, and the technology has been advanced to clinical trials in the intervening decades. Some TEHVs have had clinical success, whereas others have failed, with structural degeneration resulting in patient deaths. The etiologies of these complications are poorly understood because much of the research in this field has been performed in large animals and humans, and, therefore, there are few studies of the mechanisms of neotissue formation. This review examines the need for a TEHV to treat pediatric patients with valve disease, the history of TEHVs, and a future that would benefit from extension of the reverse translational trend in this field to include small animal studies.

摘要

心脏瓣膜疾病会带来较高的发病率和死亡率。瓣膜置换术可显著改善预后,但目前可用的机械和生物瓣膜置换物本身也存在并发症。机械瓣膜的血栓栓塞发生率较高,需要终身抗凝。生物假体瓣膜的寿命要短得多,容易撕裂和降解。这两种类型的瓣膜都没有生长能力,因此在儿科患者中尤其成问题。组织工程学有可能通过创建由原生组织组成的新瓣膜来克服这些挑战,这种新瓣膜具有生长和重塑的能力。第一个组织工程心脏瓣膜 (TEHV) 是在 20 多年前在绵羊模型中创建的,该技术在过去几十年中已经发展到临床试验阶段。一些 TEHVs 取得了临床成功,而另一些则失败了,结构退化导致患者死亡。这些并发症的病因尚不清楚,因为该领域的大部分研究都是在大型动物和人类中进行的,因此,很少有关于新组织形成机制的研究。本文回顾了 TEHV 治疗瓣膜疾病儿科患者的必要性、TEHV 的历史,以及受益于将该领域的反向转化趋势扩展到包括小动物研究的未来。

相似文献

1
Tissue-Engineered Heart Valves: A Call for Mechanistic Studies.组织工程心脏瓣膜:对机制研究的呼吁。
Tissue Eng Part B Rev. 2018 Jun;24(3):240-253. doi: 10.1089/ten.TEB.2017.0425. Epub 2018 Feb 13.
2
Current Status of Tissue Engineering Heart Valve.组织工程心脏瓣膜的现状
World J Pediatr Congenit Heart Surg. 2016 Nov;7(6):677-684. doi: 10.1177/2150135116664873.
4
Bioengineering challenges for heart valve tissue engineering.心脏瓣膜组织工程的生物工程挑战
Annu Rev Biomed Eng. 2009;11:289-313. doi: 10.1146/annurev-bioeng-061008-124903.

引用本文的文献

5
The horizon of pediatric cardiac critical care.小儿心脏重症监护的前沿领域。
Front Pediatr. 2022 Sep 16;10:863868. doi: 10.3389/fped.2022.863868. eCollection 2022.
7
Clinical Impact of Computational Heart Valve Models.计算心脏瓣膜模型的临床影响
Materials (Basel). 2022 May 5;15(9):3302. doi: 10.3390/ma15093302.
8
Surgical techniques for aortic valve xenotransplantation.异种主动脉瓣移植的手术技术。
J Cardiothorac Surg. 2021 Dec 28;16(1):358. doi: 10.1186/s13019-021-01743-0.

本文引用的文献

2
Bioresorbable Scaffolds: Clinical Outcomes and Considerations.生物可吸收支架:临床结果与考量
Interv Cardiol Clin. 2016 Jul;5(3):357-363. doi: 10.1016/j.iccl.2016.02.005. Epub 2016 Jun 21.
4
Utilizing the Foreign Body Response to Grow Tissue Engineered Blood Vessels in Vivo.利用异物反应在体内生长组织工程血管
J Cardiovasc Transl Res. 2017 Apr;10(2):167-179. doi: 10.1007/s12265-017-9731-7. Epub 2017 Feb 15.
6
Prosthetic Heart Valve Thrombosis.人工心脏瓣膜血栓形成。
J Am Coll Cardiol. 2016 Dec 20;68(24):2670-2689. doi: 10.1016/j.jacc.2016.09.958.
7
On the Mechanics of Transcatheter Aortic Valve Replacement.经导管主动脉瓣置换术的力学原理
Ann Biomed Eng. 2017 Feb;45(2):310-331. doi: 10.1007/s10439-016-1759-3. Epub 2016 Nov 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验