Suppr超能文献

在 3-D 空间中头方向细胞的发射特性和行为表现。

Head direction cell firing properties and behavioural performance in 3-D space.

机构信息

Department of Psychological and Brain Sciences, Dartmouth College, Hanover, New Hampshire, USA.

出版信息

J Physiol. 2011 Feb 15;589(Pt 4):835-41. doi: 10.1113/jphysiol.2010.194266. Epub 2010 Sep 20.

Abstract

Previous studies have identified a population of neurons in the rat brain that discharge as a function of the animal's directional heading in the horizontal plane, independent of their location and on-going behaviour. Most studies on head direction (HD) cells have explored how they respond in two-dimensional environments within the horizontal plane. Many animals, however, live and locomote in a three-dimensional world. This paper reviews how HD cells respond when the animal locomotes on a vertical surface or inverted on a ceiling. We found that HD cells fire in a normal, direction-dependent manner when the rat is in the vertical plane, but not when the animal is inverted. Recent behavioural studies reported that rats are capable of accurately performing a navigational task when inverted, but only when the task was simple and started from not more than one or two entry points. Probe trials found that they did not have a flexible, map-like representation of space when inverted. The loss of the directional signal when the animal is in an inverted orientation may account for the absence of the map-like representation. Taken together, these findings indicate that a normal otolith signal contributes an important role to HD cell discharge.

摘要

先前的研究已经确定了大鼠大脑中的一群神经元,它们的放电活动与动物在水平面上的定向运动有关,而与它们的位置和正在进行的行为无关。大多数关于头部方向(HD)细胞的研究都探讨了它们在二维环境中对水平平面的反应。然而,许多动物生活和移动在三维世界中。本文综述了当动物在垂直表面上移动或倒挂在天花板上时,HD 细胞的反应。我们发现,当大鼠处于垂直平面时,HD 细胞以正常的、方向依赖的方式放电,但当动物倒置时则不会。最近的行为研究报告称,当任务简单且仅从一两个入口点开始时,大鼠能够在倒置状态下准确执行导航任务。探测试验发现,当动物倒置时,它们没有灵活的、地图式的空间表示。当动物处于倒置方向时,定向信号的丢失可能解释了地图式表示的缺失。综上所述,这些发现表明,正常的耳石信号对 HD 细胞放电起着重要作用。

相似文献

1
Head direction cell firing properties and behavioural performance in 3-D space.
J Physiol. 2011 Feb 15;589(Pt 4):835-41. doi: 10.1113/jphysiol.2010.194266. Epub 2010 Sep 20.
2
Commutative Properties of Head Direction Cells during Locomotion in 3D: Are All Routes Equal?
J Neurosci. 2020 Apr 8;40(15):3035-3051. doi: 10.1523/JNEUROSCI.2789-19.2020. Epub 2020 Mar 3.
3
Maintenance of rat head direction cell firing during locomotion in the vertical plane.
J Neurophysiol. 2000 Jan;83(1):393-405. doi: 10.1152/jn.2000.83.1.393.
4
Three-dimensional tuning of head direction cells in rats.
J Neurophysiol. 2019 Jan 1;121(1):4-37. doi: 10.1152/jn.00880.2017. Epub 2018 Oct 31.
5
Degradation of head direction cell activity during inverted locomotion.
J Neurosci. 2005 Mar 2;25(9):2420-8. doi: 10.1523/JNEUROSCI.3511-04.2005.
6
Comparisons of head direction cell activity in the postsubiculum and anterior thalamus of freely moving rats.
Hippocampus. 1998;8(2):87-108. doi: 10.1002/(SICI)1098-1063(1998)8:2<87::AID-HIPO1>3.0.CO;2-4.
7
The head direction signal: origins and sensory-motor integration.
Annu Rev Neurosci. 2007;30:181-207. doi: 10.1146/annurev.neuro.29.051605.112854.
8
The head-direction signal is critical for navigation requiring a cognitive map but not for learning a spatial habit.
Curr Biol. 2013 Aug 19;23(16):1536-40. doi: 10.1016/j.cub.2013.06.030. Epub 2013 Jul 25.
9
Anticipatory Neural Activity Improves the Decoding Accuracy for Dynamic Head-Direction Signals.
J Neurosci. 2019 Apr 10;39(15):2847-2859. doi: 10.1523/JNEUROSCI.2605-18.2019. Epub 2019 Jan 28.
10
Directional learning, but no spatial mapping by rats performing a navigational task in an inverted orientation.
Neurobiol Learn Mem. 2010 May;93(4):495-505. doi: 10.1016/j.nlm.2010.01.007. Epub 2010 Jan 28.

引用本文的文献

2
The Growing Evidence for the Importance of the Otoliths in Spatial Memory.
Front Neural Circuits. 2019 Oct 18;13:66. doi: 10.3389/fncir.2019.00066. eCollection 2019.
3
Cerebellar Prediction of the Dynamic Sensory Consequences of Gravity.
Curr Biol. 2019 Aug 19;29(16):2698-2710.e4. doi: 10.1016/j.cub.2019.07.006. Epub 2019 Aug 1.
4
Our sense of direction: progress, controversies and challenges.
Nat Neurosci. 2017 Oct 26;20(11):1465-1473. doi: 10.1038/nn.4658.
5
Topological Schemas of Cognitive Maps and Spatial Learning.
Front Comput Neurosci. 2016 Mar 8;10:18. doi: 10.3389/fncom.2016.00018. eCollection 2016.
6
Neural encoding of large-scale three-dimensional space-properties and constraints.
Front Psychol. 2015 Jul 14;6:927. doi: 10.3389/fpsyg.2015.00927. eCollection 2015.
7
Multisensory integration for orientation and movement.
J Physiol. 2011 Feb 15;589(Pt 4):805. doi: 10.1113/jphysiol.2011.205286.
8
The sense of self-motion, orientation and balance explored by vestibular stimulation.
J Physiol. 2011 Feb 15;589(Pt 4):807-13. doi: 10.1113/jphysiol.2010.197665. Epub 2010 Oct 4.

本文引用的文献

1
Active and passive movement are encoded equally by head direction cells in the anterodorsal thalamus.
J Neurophysiol. 2011 Aug;106(2):788-800. doi: 10.1152/jn.01098.2010. Epub 2011 May 25.
2
Directional learning, but no spatial mapping by rats performing a navigational task in an inverted orientation.
Neurobiol Learn Mem. 2010 May;93(4):495-505. doi: 10.1016/j.nlm.2010.01.007. Epub 2010 Jan 28.
4
Head direction cell activity in mice: robust directional signal depends on intact otolith organs.
J Neurosci. 2009 Jan 28;29(4):1061-76. doi: 10.1523/JNEUROSCI.1679-08.2009.
5
Vestibular system: the many facets of a multimodal sense.
Annu Rev Neurosci. 2008;31:125-50. doi: 10.1146/annurev.neuro.31.060407.125555.
7
The head direction signal: origins and sensory-motor integration.
Annu Rev Neurosci. 2007;30:181-207. doi: 10.1146/annurev.neuro.29.051605.112854.
8
Degradation of head direction cell activity during inverted locomotion.
J Neurosci. 2005 Mar 2;25(9):2420-8. doi: 10.1523/JNEUROSCI.3511-04.2005.
9
Roles of gravitational cues and efference copy signals in the rotational updating of memory saccades.
J Neurophysiol. 2005 Jul;94(1):468-78. doi: 10.1152/jn.00700.2004. Epub 2005 Feb 16.
10
Rat head direction cell responses in zero-gravity parabolic flight.
J Neurophysiol. 2004 Nov;92(5):2887-997. doi: 10.1152/jn.00887.2003. Epub 2004 Jun 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验