Department of Industrial Engineering & Logistics Management, Shanghai Jiao Tong University, Shanghai, China.
J Med Syst. 2012 Jun;36(3):1283-300. doi: 10.1007/s10916-010-9589-6. Epub 2010 Sep 23.
Clinical pathways' variances present complex, fuzzy, uncertain and high-risk characteristics. They could cause complicating diseases or even endanger patients' life if not handled effectively. In order to improve the accuracy and efficiency of variances handling by Takagi-Sugeno (T-S) fuzzy neural networks (FNNs), a new variances handling method for clinical pathways (CPs) is proposed in this study, which is based on T-S FNNs with novel hybrid learning algorithm. And the optimal structure and parameters can be achieved simultaneously by integrating the random cooperative decomposing particle swarm optimization algorithm (RCDPSO) and discrete binary version of PSO (DPSO) algorithm. Finally, a case study on liver poisoning of osteosarcoma preoperative chemotherapy CP is used to validate the proposed method. The result demonstrates that T-S FNNs based on the proposed algorithm achieves superior performances in efficiency, precision, and generalization ability to standard T-S FNNs, Mamdani FNNs and T-S FNNs based on other algorithms (CPSO and PSO) for variances handling of CPs.
临床路径的变异具有复杂、模糊、不确定和高风险的特点。如果处理不当,可能会导致并发症甚至危及患者生命。为了提高基于 Takagi-Sugeno(T-S)模糊神经网络(FNN)的变异处理的准确性和效率,本研究提出了一种基于 T-S FNN 的新的临床路径(CP)变异处理方法,该方法采用了新颖的混合学习算法。通过整合随机合作分解粒子群优化算法(RCDPSO)和离散二进制版本的粒子群优化算法(DPSO)算法,可以同时实现最优的结构和参数。最后,通过对骨肉瘤术前化疗 CP 肝中毒的案例研究,验证了所提出的方法。结果表明,基于所提出算法的 T-S FNN 在处理 CP 变异方面的效率、精度和泛化能力均优于标准 T-S FNN、Mamdani FNN 以及基于其他算法(CPSO 和 PSO)的 T-S FNN。