García-Machorro Jazmín, Ramírez-Salinas Gema Lizbeth, Martinez-Archundia Marlet, Correa-Basurto José
Laboratorio de Medicina de Conservación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City 11340, Mexico.
Laboratorio de Diseño y Desarrollo de Nuevos Fármacos e Innovación Biotécnológica, Escuela Superior de Medicina, Instituto Politécnico Nacional, México City 11340, Mexico.
Vaccines (Basel). 2022 Oct 31;10(11):1844. doi: 10.3390/vaccines10111844.
After the outbreak of SARS-CoV-2 by the end of 2019, the vaccine development strategies became a worldwide priority. Furthermore, the appearances of novel SARS-CoV-2 variants challenge researchers to develop new pharmacological or preventive strategies. However, vaccines still represent an efficient way to control the SARS-CoV-2 pandemic worldwide. This review describes the importance of bioinformatic and immunoinformatic tools (in silico) for guide vaccine design. In silico strategies permit the identification of epitopes (immunogenic peptides) which could be used as potential vaccines, as well as nonacarriers such as: vector viral based vaccines, RNA-based vaccines and dendrimers through immunoinformatics. Currently, nucleic acid and protein sequential as well structural analyses through bioinformatic tools allow us to get immunogenic epitopes which can induce immune response alone or in complex with nanocarriers. One of the advantages of in silico techniques is that they facilitate the identification of epitopes, while accelerating the process and helping to economize some stages of the development of safe vaccines.
2019年底新型冠状病毒(SARS-CoV-2)爆发后,疫苗研发策略成为全球优先事项。此外,新型SARS-CoV-2变体的出现促使研究人员开发新的药理学或预防策略。然而,疫苗仍然是全球控制SARS-CoV-2大流行的有效方式。本综述描述了生物信息学和免疫信息学工具(计算机模拟)在指导疫苗设计方面的重要性。计算机模拟策略允许通过免疫信息学鉴定可作为潜在疫苗的表位(免疫原性肽)以及非载体,如基于载体病毒的疫苗、基于RNA的疫苗和树枝状大分子。目前,通过生物信息学工具进行核酸和蛋白质序列及结构分析,使我们能够获得可单独或与纳米载体复合诱导免疫反应的免疫原性表位。计算机模拟技术的优点之一是它们有助于表位的鉴定,同时加速这一过程并有助于节省安全疫苗开发的某些阶段。