Suppr超能文献

富含β-折叠的纤维状蛋白质中的机械能传递与耗散

Mechanical energy transfer and dissipation in fibrous beta-sheet-rich proteins.

作者信息

Xu Zhiping, Buehler Markus J

机构信息

Laboratory for Atomistic and Molecular Mechanics, Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Room 1-235 A&B, Cambridge, Massachusetts 02139, USA.

出版信息

Phys Rev E Stat Nonlin Soft Matter Phys. 2010 Jun;81(6 Pt 1):061910. doi: 10.1103/PhysRevE.81.061910. Epub 2010 Jun 7.

Abstract

Mechanical properties of structural protein materials are crucial for our understanding of biological processes and disease states. Through utilization of molecular simulation based on stress wave tracking, we investigate mechanical energy transfer processes in fibrous beta-sheet-rich proteins that consist of highly ordered hydrogen bond (H-bond) networks. By investigating four model proteins including two morphologies of amyloids, beta solenoids, and silk beta-sheet nanocrystals, we find that all beta-sheet-rich protein fibrils provide outstanding elastic moduli, where the silk nanocrystal reaches the highest value of ≈40 GPa. However, their capacities to dissipate mechanical energy differ significantly and are controlled strongly by the underlying molecular structure of H-bond network. Notably, silk beta-sheet nanocrystals feature a ten times higher energy damping coefficient than others, owing to flexible intrastrand motions in the transverse directions. The results demonstrate a unique feature of silk nanocrystals, their capacity to simultaneously provide extreme stiffness and energy dissipation capacity. Our results could help one to explain the remarkable properties of silks from an atomistic and molecular perspective, in particular its great toughness and energy dissipation capacity, and may enable the design of multifunctional nanomaterials with outstanding stiffness, strength, and impact resistance.

摘要

结构蛋白材料的力学性能对于我们理解生物过程和疾病状态至关重要。通过基于应力波跟踪的分子模拟,我们研究了由高度有序的氢键(H键)网络组成的富含β-折叠的纤维状蛋白质中的机械能转移过程。通过研究四种模型蛋白,包括两种形态的淀粉样蛋白、β-螺线管和丝β-折叠纳米晶体,我们发现所有富含β-折叠的蛋白质纤维都具有出色的弹性模量,其中丝纳米晶体达到了约40 GPa的最高值。然而,它们耗散机械能的能力差异显著,并且受到氢键网络潜在分子结构的强烈控制。值得注意的是,丝β-折叠纳米晶体的能量阻尼系数比其他晶体高十倍,这归因于横向方向上灵活的链内运动。结果表明了丝纳米晶体的独特特征,即它们能够同时提供极高的刚度。我们的结果有助于从原子和分子角度解释丝绸的卓越性能,特别是其极大的韧性和能量耗散能力,并可能有助于设计具有出色刚度、强度和抗冲击性的多功能纳米材料。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验